Normalized defining polynomial
\( x^{16} - x^{15} + 86 x^{14} - 86 x^{13} + 3061 x^{12} - 3061 x^{11} + 58311 x^{10} - 58311 x^{9} + 642686 x^{8} - 642686 x^{7} + 4148936 x^{6} - 4148936 x^{5} + 15305186 x^{4} - 15305186 x^{3} + 31242686 x^{2} - 31242686 x + 37883311 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(108265024508940221449655688273=3^{8}\cdot 7^{8}\cdot 17^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $65.26$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(357=3\cdot 7\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{357}(64,·)$, $\chi_{357}(1,·)$, $\chi_{357}(335,·)$, $\chi_{357}(209,·)$, $\chi_{357}(274,·)$, $\chi_{357}(20,·)$, $\chi_{357}(167,·)$, $\chi_{357}(41,·)$, $\chi_{357}(106,·)$, $\chi_{357}(43,·)$, $\chi_{357}(146,·)$, $\chi_{357}(125,·)$, $\chi_{357}(169,·)$, $\chi_{357}(253,·)$, $\chi_{357}(62,·)$, $\chi_{357}(127,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{8275601} a^{9} + \frac{1451671}{8275601} a^{8} + \frac{45}{8275601} a^{7} + \frac{137633}{8275601} a^{6} + \frac{675}{8275601} a^{5} - \frac{2417388}{8275601} a^{4} + \frac{3750}{8275601} a^{3} - \frac{1393951}{8275601} a^{2} + \frac{5625}{8275601} a + \frac{2232131}{8275601}$, $\frac{1}{8275601} a^{10} + \frac{50}{8275601} a^{8} + \frac{1017246}{8275601} a^{7} + \frac{875}{8275601} a^{6} + \frac{2501206}{8275601} a^{5} + \frac{6250}{8275601} a^{4} + \frac{185257}{8275601} a^{3} + \frac{15625}{8275601} a^{2} - \frac{3674658}{8275601} a + \frac{6250}{8275601}$, $\frac{1}{8275601} a^{11} + \frac{2914105}{8275601} a^{8} - \frac{1375}{8275601} a^{7} + \frac{3895157}{8275601} a^{6} - \frac{27500}{8275601} a^{5} - \frac{3079358}{8275601} a^{4} - \frac{171875}{8275601} a^{3} - \frac{181916}{8275601} a^{2} - \frac{275000}{8275601} a - \frac{4023737}{8275601}$, $\frac{1}{8275601} a^{12} - \frac{1650}{8275601} a^{8} - \frac{3105553}{8275601} a^{7} - \frac{38500}{8275601} a^{6} - \frac{507195}{8275601} a^{5} - \frac{309375}{8275601} a^{4} + \frac{3993255}{8275601} a^{3} - \frac{825000}{8275601} a^{2} - \frac{1898781}{8275601} a - \frac{343750}{8275601}$, $\frac{1}{8275601} a^{13} + \frac{502908}{8275601} a^{8} + \frac{35750}{8275601} a^{7} + \frac{3146028}{8275601} a^{6} + \frac{804375}{8275601} a^{5} - \frac{4132864}{8275601} a^{4} - \frac{2913101}{8275601} a^{3} - \frac{1300853}{8275601} a^{2} + \frac{661899}{8275601} a + \frac{373705}{8275601}$, $\frac{1}{8275601} a^{14} + \frac{45500}{8275601} a^{8} - \frac{2933630}{8275601} a^{7} + \frac{1194375}{8275601} a^{6} + \frac{3979478}{8275601} a^{5} + \frac{1961899}{8275601} a^{4} - \frac{368825}{8275601} a^{3} + \frac{3610697}{8275601} a^{2} + \frac{1771747}{8275601} a + \frac{3911899}{8275601}$, $\frac{1}{8275601} a^{15} + \frac{1883052}{8275601} a^{8} - \frac{853125}{8275601} a^{7} - \frac{1967666}{8275601} a^{6} - \frac{3923798}{8275601} a^{5} - \frac{227716}{8275601} a^{4} - \frac{1502283}{8275601} a^{3} + \frac{2336183}{8275601} a^{2} - \frac{3757571}{8275601} a - \frac{3785028}{8275601}$
Class group and class number
$C_{2}\times C_{3746}$, which has order $7492$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3640.012213375973 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 16 |
| The 16 conjugacy class representatives for $C_{16}$ |
| Character table for $C_{16}$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | R | $16$ | R | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| 17 | Data not computed | ||||||