Properties

Label 16.0.10814421240...5625.1
Degree $16$
Signature $[0, 8]$
Discriminant $5^{12}\cdot 29^{8}\cdot 941^{2}$
Root discriminant $42.38$
Ramified primes $5, 29, 941$
Class number $40$ (GRH)
Class group $[2, 20]$ (GRH)
Galois group 16T1439

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![11881, -18530, 5060, 10935, -8459, -305, 7620, -4200, 591, 870, -300, -100, 111, -15, -5, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 5*x^14 - 15*x^13 + 111*x^12 - 100*x^11 - 300*x^10 + 870*x^9 + 591*x^8 - 4200*x^7 + 7620*x^6 - 305*x^5 - 8459*x^4 + 10935*x^3 + 5060*x^2 - 18530*x + 11881)
 
gp: K = bnfinit(x^16 - 5*x^14 - 15*x^13 + 111*x^12 - 100*x^11 - 300*x^10 + 870*x^9 + 591*x^8 - 4200*x^7 + 7620*x^6 - 305*x^5 - 8459*x^4 + 10935*x^3 + 5060*x^2 - 18530*x + 11881, 1)
 

Normalized defining polynomial

\( x^{16} - 5 x^{14} - 15 x^{13} + 111 x^{12} - 100 x^{11} - 300 x^{10} + 870 x^{9} + 591 x^{8} - 4200 x^{7} + 7620 x^{6} - 305 x^{5} - 8459 x^{4} + 10935 x^{3} + 5060 x^{2} - 18530 x + 11881 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(108144212401152158447265625=5^{12}\cdot 29^{8}\cdot 941^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $42.38$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 29, 941$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{895413112510850936704197442387622} a^{15} + \frac{378882519121582998289808734546}{4107399598673628150019254322879} a^{14} - \frac{68830720120067478616070486224628}{447706556255425468352098721193811} a^{13} + \frac{59512378274935759285705829425949}{447706556255425468352098721193811} a^{12} - \frac{100481706594380963891945597080551}{447706556255425468352098721193811} a^{11} + \frac{184049217439754079070887712603355}{895413112510850936704197442387622} a^{10} + \frac{279357439950894438493004324463469}{895413112510850936704197442387622} a^{9} - \frac{65645026116245728786666335253857}{447706556255425468352098721193811} a^{8} - \frac{49586639260187605595777743318316}{447706556255425468352098721193811} a^{7} + \frac{310287668926080671330207906884827}{895413112510850936704197442387622} a^{6} + \frac{181368521643824134513962984164021}{895413112510850936704197442387622} a^{5} + \frac{36044523077121235920995738463481}{895413112510850936704197442387622} a^{4} + \frac{175440774995852539583966239313393}{447706556255425468352098721193811} a^{3} - \frac{130306596927066725638430683053645}{895413112510850936704197442387622} a^{2} + \frac{103977455235508393091511584616029}{447706556255425468352098721193811} a + \frac{3333749572370619507513626907097}{8214799197347256300038508645758}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{20}$, which has order $40$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 206144.795238 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1439:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 2048
The 74 conjugacy class representatives for t16n1439 are not computed
Character table for t16n1439 is not computed

Intermediate fields

\(\Q(\sqrt{29}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{145}) \), \(\Q(\sqrt{5}, \sqrt{29})\), 8.0.415969638125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }{,}\,{\href{/LocalNumberField/2.4.0.1}{4} }{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ R ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{6}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.4.3.2$x^{4} - 20$$4$$1$$3$$C_4$$[\ ]_{4}$
5.4.3.2$x^{4} - 20$$4$$1$$3$$C_4$$[\ ]_{4}$
5.4.3.1$x^{4} - 5$$4$$1$$3$$C_4$$[\ ]_{4}$
5.4.3.1$x^{4} - 5$$4$$1$$3$$C_4$$[\ ]_{4}$
$29$29.2.1.1$x^{2} - 29$$2$$1$$1$$C_2$$[\ ]_{2}$
29.2.1.1$x^{2} - 29$$2$$1$$1$$C_2$$[\ ]_{2}$
29.4.2.1$x^{4} + 145 x^{2} + 7569$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
29.8.4.1$x^{8} + 31958 x^{4} - 24389 x^{2} + 255328441$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
941Data not computed