Normalized defining polynomial
\( x^{16} + 748 x^{14} + 218042 x^{12} + 32039832 x^{10} + 2528793520 x^{8} + 103688499024 x^{6} + 1891077591304 x^{4} + 9615126068768 x^{2} + 9853649041808 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(10794315587750478004949812183658374627328=2^{44}\cdot 11^{8}\cdot 17^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $317.74$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2992=2^{4}\cdot 11\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2992}(1,·)$, $\chi_{2992}(131,·)$, $\chi_{2992}(571,·)$, $\chi_{2992}(1099,·)$, $\chi_{2992}(1937,·)$, $\chi_{2992}(1363,·)$, $\chi_{2992}(2201,·)$, $\chi_{2992}(2905,·)$, $\chi_{2992}(353,·)$, $\chi_{2992}(1187,·)$, $\chi_{2992}(2025,·)$, $\chi_{2992}(1451,·)$, $\chi_{2992}(1585,·)$, $\chi_{2992}(2419,·)$, $\chi_{2992}(2729,·)$, $\chi_{2992}(1979,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{11} a^{2}$, $\frac{1}{11} a^{3}$, $\frac{1}{242} a^{4}$, $\frac{1}{242} a^{5}$, $\frac{1}{2662} a^{6}$, $\frac{1}{2662} a^{7}$, $\frac{1}{58564} a^{8}$, $\frac{1}{58564} a^{9}$, $\frac{1}{644204} a^{10}$, $\frac{1}{8374652} a^{11} + \frac{3}{380666} a^{9} + \frac{5}{34606} a^{7} + \frac{2}{1573} a^{5} - \frac{1}{143} a^{3} - \frac{6}{13} a$, $\frac{1}{736969376} a^{12} + \frac{1}{2093663} a^{10} - \frac{1}{380666} a^{8} + \frac{1}{69212} a^{6} + \frac{3}{3146} a^{4} - \frac{4}{143} a^{2} + \frac{1}{4}$, $\frac{1}{736969376} a^{13} - \frac{1}{5324} a^{7} + \frac{5}{52} a$, $\frac{1}{21537889538504900704} a^{14} + \frac{51439023}{177999087095081824} a^{12} - \frac{357213507}{505679224701937} a^{10} - \frac{6832590249}{2022716898807748} a^{8} - \frac{12026022487}{183883354437068} a^{6} + \frac{13175874185}{8358334292594} a^{4} - \frac{1874604413}{138154285828} a^{2} - \frac{1021958411}{10627252756}$, $\frac{1}{21537889538504900704} a^{15} + \frac{51439023}{177999087095081824} a^{13} + \frac{111742413}{11124942943442614} a^{11} - \frac{3700757454}{505679224701937} a^{9} + \frac{9228483025}{183883354437068} a^{7} + \frac{7862247807}{8358334292594} a^{5} + \frac{53770120749}{1519697144108} a^{3} + \frac{18596298925}{138154285828} a$
Class group and class number
$C_{2}\times C_{2}\times C_{65218052}$, which has order $260872208$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 308865.41107064753 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 16 |
| The 16 conjugacy class representatives for $C_{16}$ |
| Character table for $C_{16}$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, 8.8.1680747204608.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | $16$ | $16$ | R | ${\href{/LocalNumberField/13.1.0.1}{1} }^{16}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.22.29 | $x^{8} + 4 x^{6} + 24 x^{5} + 8 x^{2} + 48 x + 12$ | $4$ | $2$ | $22$ | $C_8$ | $[3, 4]^{2}$ |
| 2.8.22.29 | $x^{8} + 4 x^{6} + 24 x^{5} + 8 x^{2} + 48 x + 12$ | $4$ | $2$ | $22$ | $C_8$ | $[3, 4]^{2}$ | |
| 11 | Data not computed | ||||||
| 17 | Data not computed | ||||||