Normalized defining polynomial
\( x^{16} - 8 x^{15} + 204 x^{14} - 1260 x^{13} + 15852 x^{12} - 77252 x^{11} + 610208 x^{10} - 2252232 x^{9} + 11890001 x^{8} - 29764972 x^{7} + 104949032 x^{6} - 121487192 x^{5} + 325754186 x^{4} - 21775820 x^{3} + 464127720 x^{2} + 125219124 x + 530507567 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(107586731453760569991937021444096=2^{44}\cdot 223^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $100.46$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 223$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{19} a^{13} - \frac{8}{19} a^{12} + \frac{3}{19} a^{11} - \frac{3}{19} a^{10} + \frac{7}{19} a^{9} + \frac{8}{19} a^{8} - \frac{8}{19} a^{7} - \frac{9}{19} a^{6} + \frac{7}{19} a^{5} - \frac{9}{19} a^{4} + \frac{9}{19} a^{3} + \frac{3}{19} a^{2} + \frac{4}{19} a + \frac{4}{19}$, $\frac{1}{95} a^{14} + \frac{2}{95} a^{13} - \frac{39}{95} a^{12} - \frac{11}{95} a^{11} + \frac{34}{95} a^{10} + \frac{21}{95} a^{9} - \frac{4}{95} a^{8} + \frac{5}{19} a^{7} - \frac{7}{95} a^{6} + \frac{23}{95} a^{5} + \frac{33}{95} a^{4} - \frac{21}{95} a^{3} - \frac{23}{95} a^{2} - \frac{32}{95} a - \frac{36}{95}$, $\frac{1}{753332536235007355586557321532622762555744114120122094738485004845} a^{15} - \frac{537294925529149827076280679428625483022410834162604729489306664}{150666507247001471117311464306524552511148822824024418947697000969} a^{14} + \frac{638813653068346882868099025287165923100882645168051910696173853}{39649080854474071346660911659611724345039163901059057617815000255} a^{13} - \frac{319618688089750185052880977558087378049349783203322023476930979963}{753332536235007355586557321532622762555744114120122094738485004845} a^{12} - \frac{147949877918763758185440698244188747622404696262004929073657653779}{753332536235007355586557321532622762555744114120122094738485004845} a^{11} - \frac{3729692516037113701975644907382274146840648525807672779523299517}{753332536235007355586557321532622762555744114120122094738485004845} a^{10} + \frac{180864451821241129850584720249852178798622344984767795336851845764}{753332536235007355586557321532622762555744114120122094738485004845} a^{9} + \frac{299569326370950689374353975528284483754058116283312282589585472938}{753332536235007355586557321532622762555744114120122094738485004845} a^{8} + \frac{277804753028239523717757457431282429605253645418569319513967038933}{753332536235007355586557321532622762555744114120122094738485004845} a^{7} + \frac{30722429976190597329218218379630840858750656676136665735998633362}{753332536235007355586557321532622762555744114120122094738485004845} a^{6} - \frac{370004563647403406468069845508645001660288770233888262534426000983}{753332536235007355586557321532622762555744114120122094738485004845} a^{5} - \frac{102161304532318968231496742037295396005029631076171152893637835642}{753332536235007355586557321532622762555744114120122094738485004845} a^{4} - \frac{361107340848816278959820007931382979313142200050995252428478484236}{753332536235007355586557321532622762555744114120122094738485004845} a^{3} - \frac{191435731909530454918346335551803471318728398680545558451362984591}{753332536235007355586557321532622762555744114120122094738485004845} a^{2} - \frac{196048278208836602362655995072883380640560155768925185621969931192}{753332536235007355586557321532622762555744114120122094738485004845} a + \frac{124480796766629676664670831848433125918283837577207637607352761927}{753332536235007355586557321532622762555744114120122094738485004845}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{8626}$, which has order $138016$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 14766.512467 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3:S_4.C_2$ (as 16T764):
| A solvable group of order 384 |
| The 23 conjugacy class representatives for $C_2^3:S_4.C_2$ |
| Character table for $C_2^3:S_4.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.4.14272.1, 8.8.3259039744.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 223 | Data not computed | ||||||