Normalized defining polynomial
\( x^{16} - 2 x^{15} + x^{14} + 6 x^{13} - 15 x^{12} + 13 x^{11} + 15 x^{10} - 45 x^{9} + 42 x^{8} + \cdots + 1 \)
Invariants
Degree: | $16$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 8]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(10749542400000000\) \(\medspace = 2^{22}\cdot 3^{8}\cdot 5^{8}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(10.05\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{11/4}3^{1/2}5^{1/2}\approx 26.054222497305222$ | ||
Ramified primes: | \(2\), \(3\), \(5\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Aut(K/\Q) }$: | $8$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2}a^{12}-\frac{1}{2}a^{10}-\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{13}-\frac{1}{2}a^{11}-\frac{1}{2}a^{8}-\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{2}a^{14}-\frac{1}{2}a^{10}-\frac{1}{2}a^{9}-\frac{1}{2}a^{4}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{158}a^{15}-\frac{6}{79}a^{14}-\frac{37}{158}a^{13}-\frac{19}{158}a^{12}-\frac{31}{79}a^{11}-\frac{39}{79}a^{10}-\frac{37}{79}a^{9}+\frac{63}{158}a^{8}-\frac{35}{158}a^{7}-\frac{31}{158}a^{6}+\frac{4}{79}a^{5}+\frac{49}{158}a^{4}+\frac{33}{79}a^{3}-\frac{57}{158}a^{2}-\frac{41}{158}a-\frac{71}{158}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $7$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( \frac{305}{158} a^{15} - \frac{250}{79} a^{14} + \frac{85}{79} a^{13} + \frac{1789}{158} a^{12} - \frac{3821}{158} a^{11} + \frac{1377}{79} a^{10} + \frac{2461}{79} a^{9} - \frac{5521}{79} a^{8} + \frac{8759}{158} a^{7} + \frac{3054}{79} a^{6} - \frac{7707}{79} a^{5} + \frac{4352}{79} a^{4} + \frac{3145}{158} a^{3} - \frac{3044}{79} a^{2} + \frac{1687}{79} a - \frac{641}{158} \) (order $6$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{490}{79}a^{15}-\frac{1727}{158}a^{14}+\frac{633}{158}a^{13}+\frac{2935}{79}a^{12}-\frac{13123}{158}a^{11}+\frac{9749}{158}a^{10}+\frac{16197}{158}a^{9}-\frac{38985}{158}a^{8}+\frac{15714}{79}a^{7}+\frac{19943}{158}a^{6}-\frac{28233}{79}a^{5}+\frac{16900}{79}a^{4}+\frac{10565}{158}a^{3}-\frac{24813}{158}a^{2}+\frac{6691}{79}a-\frac{2825}{158}$, $\frac{1175}{79}a^{15}-\frac{3631}{158}a^{14}+\frac{503}{158}a^{13}+\frac{7300}{79}a^{12}-\frac{28701}{158}a^{11}+\frac{16491}{158}a^{10}+\frac{44693}{158}a^{9}-\frac{86659}{158}a^{8}+\frac{28237}{79}a^{7}+\frac{63583}{158}a^{6}-\frac{63596}{79}a^{5}+\frac{27792}{79}a^{4}+\frac{38733}{158}a^{3}-\frac{52343}{158}a^{2}+\frac{11549}{79}a-\frac{4031}{158}$, $\frac{906}{79}a^{15}-\frac{3021}{158}a^{14}+\frac{290}{79}a^{13}+\frac{11313}{158}a^{12}-\frac{11695}{79}a^{11}+\frac{7226}{79}a^{10}+\frac{34103}{158}a^{9}-\frac{35510}{79}a^{8}+\frac{48365}{158}a^{7}+\frac{23659}{79}a^{6}-\frac{105031}{158}a^{5}+\frac{49525}{158}a^{4}+\frac{29611}{158}a^{3}-\frac{44113}{158}a^{2}+\frac{10096}{79}a-\frac{1837}{79}$, $\frac{233}{158}a^{15}-\frac{347}{158}a^{14}-\frac{5}{79}a^{13}+\frac{1577}{158}a^{12}-\frac{2991}{158}a^{11}+\frac{1497}{158}a^{10}+\frac{5115}{158}a^{9}-\frac{4866}{79}a^{8}+\frac{6223}{158}a^{7}+\frac{3617}{79}a^{6}-\frac{7600}{79}a^{5}+\frac{7625}{158}a^{4}+\frac{3607}{158}a^{3}-\frac{3599}{79}a^{2}+\frac{4035}{158}a-\frac{411}{79}$, $\frac{31}{79}a^{15}-\frac{349}{158}a^{14}+\frac{313}{158}a^{13}+\frac{201}{79}a^{12}-\frac{2185}{158}a^{11}+\frac{2827}{158}a^{10}+\frac{231}{158}a^{9}-\frac{6759}{158}a^{8}+\frac{3971}{79}a^{7}-\frac{1369}{158}a^{6}-\frac{5045}{79}a^{5}+\frac{4995}{79}a^{4}+\frac{221}{158}a^{3}-\frac{5193}{158}a^{2}+\frac{1336}{79}a-\frac{531}{158}$, $\frac{799}{158}a^{15}-\frac{1293}{158}a^{14}+\frac{299}{158}a^{13}+\frac{2482}{79}a^{12}-\frac{5098}{79}a^{11}+\frac{3283}{79}a^{10}+\frac{14739}{158}a^{9}-\frac{31033}{158}a^{8}+\frac{11258}{79}a^{7}+\frac{19945}{158}a^{6}-\frac{45827}{158}a^{5}+\frac{12268}{79}a^{4}+\frac{11101}{158}a^{3}-\frac{10013}{79}a^{2}+\frac{10691}{158}a-\frac{2219}{158}$, $\frac{1171}{158}a^{15}-\frac{1807}{158}a^{14}+\frac{281}{158}a^{13}+\frac{3609}{79}a^{12}-\frac{7150}{79}a^{11}+\frac{4180}{79}a^{10}+\frac{21971}{158}a^{9}-\frac{43147}{158}a^{8}+\frac{14386}{79}a^{7}+\frac{30849}{158}a^{6}-\frac{63549}{158}a^{5}+\frac{14509}{79}a^{4}+\frac{17799}{158}a^{3}-\frac{13426}{79}a^{2}+\frac{12661}{158}a-\frac{2403}{158}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 52.8621079118 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 52.8621079118 \cdot 1}{6\cdot\sqrt{10749542400000000}}\cr\approx \mathstrut & 0.206413066048 \end{aligned}\]
Galois group
A solvable group of order 64 |
The 28 conjugacy class representatives for $D_8:C_4$ |
Character table for $D_8:C_4$ |
Intermediate fields
\(\Q(\sqrt{-15}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-3}, \sqrt{5})\), 8.0.3240000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 sibling: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | R | ${\href{/padicField/7.4.0.1}{4} }^{4}$ | ${\href{/padicField/11.8.0.1}{8} }^{2}$ | ${\href{/padicField/13.8.0.1}{8} }^{2}$ | ${\href{/padicField/17.8.0.1}{8} }^{2}$ | ${\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{4}$ | ${\href{/padicField/23.8.0.1}{8} }^{2}$ | ${\href{/padicField/29.8.0.1}{8} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }^{4}$ | ${\href{/padicField/37.8.0.1}{8} }^{2}$ | ${\href{/padicField/41.4.0.1}{4} }^{4}$ | ${\href{/padicField/43.8.0.1}{8} }^{2}$ | ${\href{/padicField/47.8.0.1}{8} }^{2}$ | ${\href{/padicField/53.8.0.1}{8} }^{2}$ | ${\href{/padicField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.8.22.32 | $x^{8} + 8 x^{7} + 88 x^{6} + 96 x^{5} + 188 x^{4} + 272 x^{3} + 528 x^{2} + 532$ | $4$ | $2$ | $22$ | $C_8$ | $[3, 4]^{2}$ |
2.8.0.1 | $x^{8} + x^{4} + x^{3} + x^{2} + 1$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
\(3\) | 3.16.8.1 | $x^{16} + 24 x^{14} + 4 x^{13} + 254 x^{12} + 24 x^{11} + 1508 x^{10} - 172 x^{9} + 5273 x^{8} - 2344 x^{7} + 11640 x^{6} - 7392 x^{5} + 22724 x^{4} - 10768 x^{3} + 19008 x^{2} - 11056 x + 8596$ | $2$ | $8$ | $8$ | $C_8\times C_2$ | $[\ ]_{2}^{8}$ |
\(5\) | 5.16.8.1 | $x^{16} + 160 x^{15} + 11240 x^{14} + 453600 x^{13} + 11536702 x^{12} + 190484240 x^{11} + 2020220586 x^{10} + 13041178608 x^{9} + 45239382035 x^{8} + 65384309200 x^{7} + 52374358166 x^{6} + 35488260768 x^{5} + 46408266743 x^{4} + 66345171264 x^{3} + 136057926318 x^{2} + 159173865296 x + 74196697609$ | $2$ | $8$ | $8$ | $C_8\times C_2$ | $[\ ]_{2}^{8}$ |