Normalized defining polynomial
\( x^{16} - 4 x^{15} - 4 x^{14} + 28 x^{13} + 18 x^{12} - 48 x^{11} - 64 x^{10} - 64 x^{9} - 36 x^{8} + 52 x^{7} + 212 x^{6} + 348 x^{5} + 394 x^{4} + 264 x^{3} + 96 x^{2} + 16 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1073741824000000000000=2^{42}\cdot 5^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.63$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{979} a^{14} - \frac{335}{979} a^{13} + \frac{476}{979} a^{12} + \frac{125}{979} a^{11} - \frac{299}{979} a^{10} + \frac{380}{979} a^{9} - \frac{338}{979} a^{8} + \frac{34}{89} a^{7} - \frac{129}{979} a^{6} + \frac{467}{979} a^{5} + \frac{70}{979} a^{4} - \frac{405}{979} a^{3} + \frac{202}{979} a^{2} + \frac{12}{89} a + \frac{269}{979}$, $\frac{1}{795411144341} a^{15} - \frac{163759324}{795411144341} a^{14} - \frac{26569349077}{795411144341} a^{13} + \frac{109342547599}{795411144341} a^{12} - \frac{216510611003}{795411144341} a^{11} + \frac{9116421885}{25658424011} a^{10} + \frac{331718017756}{795411144341} a^{9} - \frac{79620497577}{795411144341} a^{8} - \frac{36381718326}{795411144341} a^{7} - \frac{33586186580}{72310104031} a^{6} - \frac{193931336002}{795411144341} a^{5} + \frac{247012420016}{795411144341} a^{4} - \frac{129511966279}{795411144341} a^{3} - \frac{27442799508}{795411144341} a^{2} - \frac{135705866203}{795411144341} a + \frac{231755432600}{795411144341}$
Class group and class number
$C_{4}$, which has order $4$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{567417922}{564521749} a^{15} + \frac{2296378330}{564521749} a^{14} + \frac{2191276870}{564521749} a^{13} - \frac{16127816755}{564521749} a^{12} - \frac{9489149920}{564521749} a^{11} + \frac{920357388}{18210379} a^{10} + \frac{35002721360}{564521749} a^{9} + \frac{33233943350}{564521749} a^{8} + \frac{17749389390}{564521749} a^{7} - \frac{2876148910}{51320159} a^{6} - \frac{118991529606}{564521749} a^{5} - \frac{189948096905}{564521749} a^{4} - \frac{209219214200}{564521749} a^{3} - \frac{132938490340}{564521749} a^{2} - \frac{40818620340}{564521749} a - \frac{3978716187}{564521749} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10024.846831 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_8:C_2^2$ (as 16T45):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_8:C_2^2$ |
| Character table for $C_8:C_2^2$ |
Intermediate fields
| \(\Q(\sqrt{-10}) \), \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{10}) \), 4.0.320.1, 4.0.1280.1, \(\Q(i, \sqrt{10})\), 8.0.163840000.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.4.3.3 | $x^{4} + 10$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.4 | $x^{4} + 40$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |