Properties

Label 16.0.10737418240...0000.6
Degree $16$
Signature $[0, 8]$
Discriminant $2^{40}\cdot 5^{10}$
Root discriminant $15.47$
Ramified primes $2, 5$
Class number $2$
Class group $[2]$
Galois group $C_2\times C_4\wr C_2$ (as 16T111)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![10, -80, 260, -480, 644, -744, 780, -744, 644, -508, 372, -248, 150, -80, 32, -8, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 8*x^15 + 32*x^14 - 80*x^13 + 150*x^12 - 248*x^11 + 372*x^10 - 508*x^9 + 644*x^8 - 744*x^7 + 780*x^6 - 744*x^5 + 644*x^4 - 480*x^3 + 260*x^2 - 80*x + 10)
 
gp: K = bnfinit(x^16 - 8*x^15 + 32*x^14 - 80*x^13 + 150*x^12 - 248*x^11 + 372*x^10 - 508*x^9 + 644*x^8 - 744*x^7 + 780*x^6 - 744*x^5 + 644*x^4 - 480*x^3 + 260*x^2 - 80*x + 10, 1)
 

Normalized defining polynomial

\( x^{16} - 8 x^{15} + 32 x^{14} - 80 x^{13} + 150 x^{12} - 248 x^{11} + 372 x^{10} - 508 x^{9} + 644 x^{8} - 744 x^{7} + 780 x^{6} - 744 x^{5} + 644 x^{4} - 480 x^{3} + 260 x^{2} - 80 x + 10 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(10737418240000000000=2^{40}\cdot 5^{10}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $15.47$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{13} a^{13} + \frac{1}{13} a^{12} - \frac{2}{13} a^{11} - \frac{1}{13} a^{10} + \frac{3}{13} a^{9} - \frac{3}{13} a^{8} - \frac{2}{13} a^{7} - \frac{3}{13} a^{6} - \frac{3}{13} a^{5} + \frac{1}{13} a^{4} + \frac{4}{13} a^{3} - \frac{1}{13} a^{2} + \frac{5}{13} a - \frac{1}{13}$, $\frac{1}{13} a^{14} - \frac{3}{13} a^{12} + \frac{1}{13} a^{11} + \frac{4}{13} a^{10} - \frac{6}{13} a^{9} + \frac{1}{13} a^{8} - \frac{1}{13} a^{7} + \frac{4}{13} a^{5} + \frac{3}{13} a^{4} - \frac{5}{13} a^{3} + \frac{6}{13} a^{2} - \frac{6}{13} a + \frac{1}{13}$, $\frac{1}{4327524227} a^{15} - \frac{27221712}{4327524227} a^{14} + \frac{105632288}{4327524227} a^{13} - \frac{1825512319}{4327524227} a^{12} + \frac{429392753}{4327524227} a^{11} + \frac{1632271476}{4327524227} a^{10} - \frac{1109605618}{4327524227} a^{9} - \frac{771604047}{4327524227} a^{8} - \frac{1536864106}{4327524227} a^{7} + \frac{1272081093}{4327524227} a^{6} + \frac{70956292}{4327524227} a^{5} - \frac{1018304821}{4327524227} a^{4} + \frac{364133875}{4327524227} a^{3} + \frac{810781486}{4327524227} a^{2} + \frac{625203792}{4327524227} a - \frac{383844002}{4327524227}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{302894304}{332886479} a^{15} + \frac{2357156590}{332886479} a^{14} - \frac{9125230148}{332886479} a^{13} + \frac{21896738207}{332886479} a^{12} - \frac{39510098496}{332886479} a^{11} + \frac{64192469770}{332886479} a^{10} - \frac{94883247182}{332886479} a^{9} + \frac{127155273387}{332886479} a^{8} - \frac{159058287148}{332886479} a^{7} + \frac{179971445094}{332886479} a^{6} - \frac{184165746896}{332886479} a^{5} + \frac{171710837048}{332886479} a^{4} - \frac{144405253160}{332886479} a^{3} + \frac{102441319370}{332886479} a^{2} - \frac{47458936680}{332886479} a + \frac{8805316073}{332886479} \) (order $4$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1968.86184552 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_4\wr C_2$ (as 16T111):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 64
The 28 conjugacy class representatives for $C_2\times C_4\wr C_2$
Character table for $C_2\times C_4\wr C_2$ is not computed

Intermediate fields

\(\Q(\sqrt{-10}) \), \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{10}) \), 4.0.320.1, 4.0.1280.1, \(\Q(i, \sqrt{10})\), 8.0.32768000.1, 8.0.204800000.1, 8.0.163840000.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$5$5.4.3.4$x^{4} + 40$$4$$1$$3$$C_4$$[\ ]_{4}$
5.4.3.4$x^{4} + 40$$4$$1$$3$$C_4$$[\ ]_{4}$
5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$