Normalized defining polynomial
\( x^{16} - 8 x^{15} + 32 x^{14} - 80 x^{13} + 150 x^{12} - 248 x^{11} + 372 x^{10} - 508 x^{9} + 644 x^{8} - 744 x^{7} + 780 x^{6} - 744 x^{5} + 644 x^{4} - 480 x^{3} + 260 x^{2} - 80 x + 10 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(10737418240000000000=2^{40}\cdot 5^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $15.47$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{13} a^{13} + \frac{1}{13} a^{12} - \frac{2}{13} a^{11} - \frac{1}{13} a^{10} + \frac{3}{13} a^{9} - \frac{3}{13} a^{8} - \frac{2}{13} a^{7} - \frac{3}{13} a^{6} - \frac{3}{13} a^{5} + \frac{1}{13} a^{4} + \frac{4}{13} a^{3} - \frac{1}{13} a^{2} + \frac{5}{13} a - \frac{1}{13}$, $\frac{1}{13} a^{14} - \frac{3}{13} a^{12} + \frac{1}{13} a^{11} + \frac{4}{13} a^{10} - \frac{6}{13} a^{9} + \frac{1}{13} a^{8} - \frac{1}{13} a^{7} + \frac{4}{13} a^{5} + \frac{3}{13} a^{4} - \frac{5}{13} a^{3} + \frac{6}{13} a^{2} - \frac{6}{13} a + \frac{1}{13}$, $\frac{1}{4327524227} a^{15} - \frac{27221712}{4327524227} a^{14} + \frac{105632288}{4327524227} a^{13} - \frac{1825512319}{4327524227} a^{12} + \frac{429392753}{4327524227} a^{11} + \frac{1632271476}{4327524227} a^{10} - \frac{1109605618}{4327524227} a^{9} - \frac{771604047}{4327524227} a^{8} - \frac{1536864106}{4327524227} a^{7} + \frac{1272081093}{4327524227} a^{6} + \frac{70956292}{4327524227} a^{5} - \frac{1018304821}{4327524227} a^{4} + \frac{364133875}{4327524227} a^{3} + \frac{810781486}{4327524227} a^{2} + \frac{625203792}{4327524227} a - \frac{383844002}{4327524227}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{302894304}{332886479} a^{15} + \frac{2357156590}{332886479} a^{14} - \frac{9125230148}{332886479} a^{13} + \frac{21896738207}{332886479} a^{12} - \frac{39510098496}{332886479} a^{11} + \frac{64192469770}{332886479} a^{10} - \frac{94883247182}{332886479} a^{9} + \frac{127155273387}{332886479} a^{8} - \frac{159058287148}{332886479} a^{7} + \frac{179971445094}{332886479} a^{6} - \frac{184165746896}{332886479} a^{5} + \frac{171710837048}{332886479} a^{4} - \frac{144405253160}{332886479} a^{3} + \frac{102441319370}{332886479} a^{2} - \frac{47458936680}{332886479} a + \frac{8805316073}{332886479} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1968.86184552 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_4\wr C_2$ (as 16T111):
| A solvable group of order 64 |
| The 28 conjugacy class representatives for $C_2\times C_4\wr C_2$ |
| Character table for $C_2\times C_4\wr C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-10}) \), \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{10}) \), 4.0.320.1, 4.0.1280.1, \(\Q(i, \sqrt{10})\), 8.0.32768000.1, 8.0.204800000.1, 8.0.163840000.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.4.3.4 | $x^{4} + 40$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.4 | $x^{4} + 40$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |