Normalized defining polynomial
\( x^{16} - 4 x^{15} + 24 x^{14} - 72 x^{13} + 214 x^{12} - 460 x^{11} + 884 x^{10} - 1364 x^{9} + 1804 x^{8} - 1964 x^{7} + 1748 x^{6} - 1248 x^{5} + 666 x^{4} - 252 x^{3} + 68 x^{2} - 12 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(10737418240000000000=2^{40}\cdot 5^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $15.47$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{95} a^{14} - \frac{4}{19} a^{13} - \frac{3}{19} a^{12} + \frac{33}{95} a^{11} + \frac{36}{95} a^{10} + \frac{37}{95} a^{9} + \frac{3}{95} a^{8} + \frac{6}{19} a^{7} - \frac{2}{5} a^{6} + \frac{34}{95} a^{5} + \frac{26}{95} a^{4} - \frac{23}{95} a^{2} + \frac{21}{95} a + \frac{9}{95}$, $\frac{1}{18780835} a^{15} + \frac{13151}{18780835} a^{14} - \frac{89271}{197693} a^{13} - \frac{1098322}{18780835} a^{12} - \frac{6952046}{18780835} a^{11} - \frac{8105352}{18780835} a^{10} - \frac{946413}{3756167} a^{9} - \frac{1930757}{18780835} a^{8} - \frac{7219918}{18780835} a^{7} - \frac{1363729}{18780835} a^{6} - \frac{79931}{3756167} a^{5} - \frac{9109009}{18780835} a^{4} + \frac{6948467}{18780835} a^{3} + \frac{759188}{18780835} a^{2} + \frac{91724}{3756167} a + \frac{5881904}{18780835}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{2113552}{988465} a^{15} - \frac{153632183}{18780835} a^{14} + \frac{187257492}{3756167} a^{13} - \frac{2724788926}{18780835} a^{12} + \frac{8099503024}{18780835} a^{11} - \frac{16997453642}{18780835} a^{10} + \frac{32348630773}{18780835} a^{9} - \frac{48712360419}{18780835} a^{8} + \frac{63133096126}{18780835} a^{7} - \frac{3503921706}{988465} a^{6} + \frac{56902307956}{18780835} a^{5} - \frac{38391657518}{18780835} a^{4} + \frac{976183614}{988465} a^{3} - \frac{5915433163}{18780835} a^{2} + \frac{1307987479}{18780835} a - \frac{161734922}{18780835} \) (order $8$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2596.24415474 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_4\wr C_2$ (as 16T111):
| A solvable group of order 64 |
| The 28 conjugacy class representatives for $C_2\times C_4\wr C_2$ |
| Character table for $C_2\times C_4\wr C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-2}) \), 4.0.320.1, 4.0.1280.1, \(\Q(\zeta_{8})\), 8.0.204800000.1, 8.0.819200000.1, 8.0.6553600.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |