Normalized defining polynomial
\( x^{16} - 7 x^{15} + 48 x^{14} + 881 x^{13} - 2450 x^{12} + 4931 x^{11} + 110498 x^{10} - 129737 x^{9} + 410366 x^{8} - 600295 x^{7} - 997465 x^{6} + 3926065 x^{5} - 3011335 x^{4} + 6342040 x^{3} - 657200 x^{2} - 20284665 x + 22137835 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1062747667303462437668657811578369140625=5^{14}\cdot 89^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $274.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{85687665714421969920688592203439302833375923667755873308481} a^{15} + \frac{25346584811060065175387386970834579348978674805172857934133}{85687665714421969920688592203439302833375923667755873308481} a^{14} + \frac{31851166036261362364914431418115144458491245616804724126647}{85687665714421969920688592203439302833375923667755873308481} a^{13} - \frac{2893946361668322115701838390864788888255923463042108532728}{85687665714421969920688592203439302833375923667755873308481} a^{12} + \frac{2604905951404326850658257160605750875410500438293958426342}{85687665714421969920688592203439302833375923667755873308481} a^{11} + \frac{815356609268536878588663803699202821149104511886872580649}{85687665714421969920688592203439302833375923667755873308481} a^{10} + \frac{616013855515592652136311555573593934090944240501232660168}{85687665714421969920688592203439302833375923667755873308481} a^{9} + \frac{17751028222111771372050539925236330562035511223315961200088}{85687665714421969920688592203439302833375923667755873308481} a^{8} + \frac{7858289165133466904992037202340967696086093561680958729241}{85687665714421969920688592203439302833375923667755873308481} a^{7} + \frac{17411105954878465662101463732995175735553332652298662124022}{85687665714421969920688592203439302833375923667755873308481} a^{6} - \frac{30743426864214033519623167028216506363101648785290914337363}{85687665714421969920688592203439302833375923667755873308481} a^{5} + \frac{25386064633989490838396204887378080302072245846092565305295}{85687665714421969920688592203439302833375923667755873308481} a^{4} + \frac{1027029654569602261544644777129175731455112817500657606803}{85687665714421969920688592203439302833375923667755873308481} a^{3} + \frac{22398015636607164729149078595482466809494547881246457676338}{85687665714421969920688592203439302833375923667755873308481} a^{2} - \frac{22780988026738907818363068161691550964047125879048907504183}{85687665714421969920688592203439302833375923667755873308481} a - \frac{33436136921323137930160892557432864612222011604661622967779}{85687665714421969920688592203439302833375923667755873308481}$
Class group and class number
$C_{4}\times C_{25876}$, which has order $103504$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 54766314.0729 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_8$ (as 16T104):
| A solvable group of order 64 |
| The 22 conjugacy class representatives for $C_2^3.C_8$ |
| Character table for $C_2^3.C_8$ is not computed |
Intermediate fields
| \(\Q(\sqrt{89}) \), 4.4.17624225.2, 8.8.691114607742640625.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | R | $16$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | $16$ | $16$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{8}$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.7.3 | $x^{8} + 10$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 5.8.7.3 | $x^{8} + 10$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| 89 | Data not computed | ||||||