Normalized defining polynomial
\( x^{16} - 2 x^{15} + 6 x^{14} - 16 x^{13} + 102 x^{12} - 104 x^{11} + 967 x^{10} - 3083 x^{9} + 10279 x^{8} - 13606 x^{7} + 67069 x^{6} - 182893 x^{5} + 423774 x^{4} - 115408 x^{3} + 333897 x^{2} + 960577 x + 385867 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(10614152867452364890755536401=23^{4}\cdot 41^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $56.44$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{472} a^{12} - \frac{15}{118} a^{11} + \frac{89}{472} a^{10} + \frac{105}{236} a^{9} - \frac{75}{236} a^{8} - \frac{93}{236} a^{7} - \frac{77}{236} a^{6} + \frac{69}{472} a^{5} + \frac{113}{472} a^{4} - \frac{67}{472} a^{3} + \frac{39}{118} a^{2} + \frac{99}{472} a + \frac{201}{472}$, $\frac{1}{472} a^{13} + \frac{29}{472} a^{11} - \frac{57}{236} a^{10} + \frac{89}{236} a^{9} + \frac{9}{236} a^{8} - \frac{111}{236} a^{7} - \frac{203}{472} a^{6} - \frac{231}{472} a^{5} + \frac{105}{472} a^{4} + \frac{37}{118} a^{3} - \frac{217}{472} a^{2} - \frac{231}{472} a + \frac{3}{59}$, $\frac{1}{78352} a^{14} - \frac{1}{78352} a^{13} + \frac{37}{39176} a^{12} + \frac{19577}{78352} a^{11} + \frac{4533}{78352} a^{10} + \frac{2167}{39176} a^{9} - \frac{17419}{39176} a^{8} - \frac{35019}{78352} a^{7} + \frac{10799}{39176} a^{6} - \frac{12607}{78352} a^{5} - \frac{1125}{4897} a^{4} - \frac{1229}{4897} a^{3} + \frac{13651}{39176} a^{2} - \frac{4843}{39176} a - \frac{369}{944}$, $\frac{1}{98653875322043463859891595792298512} a^{15} + \frac{608698129035429465327664421879}{98653875322043463859891595792298512} a^{14} - \frac{400553639677485011877191115538}{6165867207627716491243224737018657} a^{13} + \frac{33907968505134479894110188590817}{98653875322043463859891595792298512} a^{12} + \frac{16542714095019518114571011052994595}{98653875322043463859891595792298512} a^{11} + \frac{6376648851524665519758036727846465}{49326937661021731929945797896149256} a^{10} + \frac{1528943426044154049411326237036355}{49326937661021731929945797896149256} a^{9} + \frac{11579722686663075478148080153887921}{98653875322043463859891595792298512} a^{8} - \frac{2696412835364773691211358963504487}{49326937661021731929945797896149256} a^{7} - \frac{21773374446884258560190094979207065}{98653875322043463859891595792298512} a^{6} + \frac{6662580014706679161923273978977631}{49326937661021731929945797896149256} a^{5} - \frac{21155967412486395663499912400302581}{49326937661021731929945797896149256} a^{4} - \frac{22898504378253470872695936208929069}{49326937661021731929945797896149256} a^{3} - \frac{4449182664880744276156037179848893}{24663468830510865964972898948074628} a^{2} - \frac{19905001898798296058064670727078237}{98653875322043463859891595792298512} a - \frac{30573903102727624115481044016044}{74287556718406222786062948638779}$
Class group and class number
$C_{6}$, which has order $6$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3403166.59806 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:C_8$ (as 16T24):
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_2^2 : C_8$ |
| Character table for $C_2^2 : C_8$ |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.2.38663.1, 4.4.68921.1, 4.2.1585183.1, 8.0.194754273881.1, 8.4.103025010883049.3, 8.4.2512805143489.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{8}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{16}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $23$ | 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $41$ | 41.8.7.3 | $x^{8} - 53136$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 41.8.7.3 | $x^{8} - 53136$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |