Normalized defining polynomial
\( x^{16} - 2 x^{15} + 22 x^{14} - 34 x^{13} + 98 x^{12} - 106 x^{11} + 366 x^{10} + 21 x^{9} + 2394 x^{8} + 200 x^{7} - 11836 x^{6} - 9835 x^{5} - 11557 x^{4} + 980 x^{3} + 99323 x^{2} + 68943 x + 21609 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1060259999412516731450111161=7^{6}\cdot 37^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $48.88$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{8} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{3}$, $\frac{1}{189} a^{12} + \frac{26}{189} a^{11} - \frac{1}{7} a^{10} - \frac{2}{63} a^{9} - \frac{4}{27} a^{8} + \frac{2}{63} a^{7} + \frac{1}{21} a^{6} + \frac{5}{27} a^{5} - \frac{5}{27} a^{4} - \frac{29}{63} a^{3} + \frac{64}{189} a^{2} + \frac{2}{9} a - \frac{1}{3}$, $\frac{1}{189} a^{13} - \frac{10}{189} a^{11} + \frac{1}{63} a^{10} + \frac{2}{189} a^{9} - \frac{22}{189} a^{8} - \frac{1}{9} a^{7} - \frac{10}{189} a^{6} + \frac{4}{189} a^{4} + \frac{58}{189} a^{3} - \frac{47}{189} a^{2} - \frac{1}{9} a - \frac{1}{3}$, $\frac{1}{181251} a^{14} + \frac{74}{60417} a^{13} - \frac{62}{181251} a^{12} + \frac{24403}{181251} a^{11} + \frac{185}{3699} a^{10} - \frac{9346}{181251} a^{9} - \frac{28082}{181251} a^{8} + \frac{3284}{25893} a^{7} - \frac{542}{8631} a^{6} + \frac{13430}{181251} a^{5} - \frac{19196}{60417} a^{4} + \frac{1201}{25893} a^{3} - \frac{10573}{25893} a^{2} - \frac{152}{1233} a - \frac{155}{411}$, $\frac{1}{2193284037966455337870903867} a^{15} + \frac{1493683444869311221531}{2193284037966455337870903867} a^{14} + \frac{53085822230972697500821}{243698226440717259763433763} a^{13} - \frac{105100736140438385364443}{2193284037966455337870903867} a^{12} + \frac{42470516429249773439778443}{313326291138065048267271981} a^{11} - \frac{124555671665216829555689417}{2193284037966455337870903867} a^{10} - \frac{94873068064724310673162772}{2193284037966455337870903867} a^{9} - \frac{3432446661142677786652096}{44760898734009292609610283} a^{8} - \frac{505383070181774173787456}{5911816813925755627684377} a^{7} - \frac{109798728712378735585903208}{731094679322151779290301289} a^{6} - \frac{40525418719835227795627061}{731094679322151779290301289} a^{5} - \frac{95649191294888374969273171}{313326291138065048267271981} a^{4} + \frac{27986028933454248930313706}{313326291138065048267271981} a^{3} + \frac{1704179176762895247594737}{14920299578003097536536761} a^{2} - \frac{1243947006556129527390520}{4973433192667699178845587} a + \frac{66424486842650326454317}{236830152031795198992647}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 17484605.3082 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_4$ (as 16T41):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^3.C_4$ |
| Character table for $C_2^3.C_4$ |
Intermediate fields
| \(\Q(\sqrt{37}) \), 4.0.50653.1, 4.2.354571.1, 4.2.9583.1, 8.0.4651661979517.1 x2, 8.0.125720594041.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 37 | Data not computed | ||||||