Normalized defining polynomial
\( x^{16} - 24 x^{13} + 13 x^{12} + 160 x^{10} - 112 x^{9} + 88 x^{8} - 1280 x^{7} + 800 x^{6} + 128 x^{5} + 16420 x^{4} - 14336 x^{3} + 8704 x^{2} - 1280 x + 64 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1058929216212757469200384=2^{36}\cdot 17^{8}\cdot 47^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.74$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{5} - \frac{1}{2} a$, $\frac{1}{8} a^{10} + \frac{3}{8} a^{6} + \frac{1}{4} a^{2}$, $\frac{1}{16} a^{11} - \frac{5}{16} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} + \frac{1}{8} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{816} a^{12} - \frac{13}{816} a^{11} - \frac{3}{136} a^{10} + \frac{25}{204} a^{9} - \frac{133}{816} a^{8} + \frac{361}{816} a^{7} - \frac{55}{408} a^{6} - \frac{91}{204} a^{5} - \frac{179}{408} a^{4} + \frac{79}{408} a^{3} + \frac{19}{68} a^{2} + \frac{41}{102} a + \frac{1}{51}$, $\frac{1}{1632} a^{13} - \frac{1}{48} a^{11} - \frac{1}{51} a^{10} + \frac{49}{544} a^{9} + \frac{11}{68} a^{8} + \frac{277}{816} a^{7} - \frac{11}{68} a^{6} - \frac{403}{816} a^{5} - \frac{1}{204} a^{4} - \frac{169}{408} a^{3} + \frac{20}{51} a^{2} - \frac{13}{102} a - \frac{19}{51}$, $\frac{1}{11424} a^{14} + \frac{1}{5712} a^{13} + \frac{1}{1904} a^{12} - \frac{1}{1428} a^{11} - \frac{229}{11424} a^{10} + \frac{239}{5712} a^{9} + \frac{47}{816} a^{8} + \frac{127}{357} a^{7} - \frac{2255}{5712} a^{6} + \frac{647}{2856} a^{5} + \frac{381}{952} a^{4} - \frac{41}{102} a^{3} + \frac{20}{51} a^{2} + \frac{1}{17} a - \frac{40}{119}$, $\frac{1}{1725020409231819168} a^{15} + \frac{909433726659}{35937925192329566} a^{14} + \frac{299370150392953}{1725020409231819168} a^{13} + \frac{12691024108185}{287503401538636528} a^{12} - \frac{3637820233968625}{246431487033117024} a^{11} - \frac{1563002065837061}{25367947194585576} a^{10} + \frac{28109498625967987}{1725020409231819168} a^{9} + \frac{68368657451860313}{862510204615909584} a^{8} + \frac{9804338615607565}{22697636963576568} a^{7} + \frac{71469606492673805}{143751700769318264} a^{6} - \frac{111710759149753391}{862510204615909584} a^{5} + \frac{115975754091394537}{431255102307954792} a^{4} + \frac{18053102275401445}{61607871758279256} a^{3} + \frac{1925444931548189}{10267978626379876} a^{2} + \frac{7323560887665556}{17968962596164783} a - \frac{3099019414342756}{53906887788494349}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1166140.10872 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.C_2^3$ (as 16T364):
| A solvable group of order 128 |
| The 26 conjugacy class representatives for $C_2^4.C_2^3$ |
| Character table for $C_2^4.C_2^3$ is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), \(\Q(\sqrt{34}) \), \(\Q(\sqrt{2}) \), 4.0.1088.2 x2, \(\Q(\sqrt{2}, \sqrt{17})\), 4.0.2312.1 x2, 8.4.1029042864128.2, 8.4.1029042864128.1, 8.0.342102016.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.8.2 | $x^{4} + 6 x^{2} + 1$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ |
| 2.4.8.2 | $x^{4} + 6 x^{2} + 1$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| 2.4.10.2 | $x^{4} + 2 x^{2} - 1$ | $4$ | $1$ | $10$ | $D_{4}$ | $[2, 3, 7/2]$ | |
| 2.4.10.2 | $x^{4} + 2 x^{2} - 1$ | $4$ | $1$ | $10$ | $D_{4}$ | $[2, 3, 7/2]$ | |
| $17$ | 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $47$ | $\Q_{47}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{47}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{47}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{47}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 47.2.0.1 | $x^{2} - x + 13$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 47.2.0.1 | $x^{2} - x + 13$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 47.2.1.1 | $x^{2} - 47$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 47.2.0.1 | $x^{2} - x + 13$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 47.2.1.1 | $x^{2} - 47$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 47.2.0.1 | $x^{2} - x + 13$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |