Normalized defining polynomial
\( x^{16} - 7 x^{15} + 11 x^{14} + 36 x^{13} - 151 x^{12} + 79 x^{11} + 514 x^{10} - 885 x^{9} - 251 x^{8} + 2148 x^{7} - 977 x^{6} - 2815 x^{5} + 3845 x^{4} + 2340 x^{3} - 5632 x^{2} - 1376 x + 3184 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(10586216645130957012009=3^{14}\cdot 19^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{7} - \frac{1}{2} a^{3} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{8} + \frac{3}{8} a^{3} + \frac{1}{8} a^{2} - \frac{1}{2}$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{8} - \frac{1}{8} a^{4} - \frac{1}{2} a^{3} + \frac{1}{8} a^{2} - \frac{1}{2}$, $\frac{1}{16} a^{11} + \frac{1}{16} a^{8} + \frac{3}{16} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} + \frac{3}{16} a^{2} - \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{688} a^{12} - \frac{3}{344} a^{11} + \frac{7}{344} a^{10} + \frac{29}{688} a^{9} - \frac{2}{43} a^{8} + \frac{7}{86} a^{7} + \frac{67}{688} a^{6} + \frac{73}{344} a^{5} + \frac{1}{8} a^{4} + \frac{39}{688} a^{3} + \frac{7}{172} a^{2} + \frac{15}{172} a + \frac{7}{43}$, $\frac{1}{1376} a^{13} - \frac{1}{1376} a^{12} - \frac{1}{86} a^{11} + \frac{13}{1376} a^{10} + \frac{27}{1376} a^{9} - \frac{13}{172} a^{8} + \frac{3}{1376} a^{7} - \frac{207}{1376} a^{6} - \frac{27}{172} a^{5} - \frac{133}{1376} a^{4} + \frac{309}{1376} a^{3} + \frac{17}{43} a^{2} + \frac{17}{344} a - \frac{4}{43}$, $\frac{1}{5504} a^{14} - \frac{1}{2752} a^{13} + \frac{3}{5504} a^{12} + \frac{7}{5504} a^{11} + \frac{133}{2752} a^{10} + \frac{47}{5504} a^{9} - \frac{39}{5504} a^{8} + \frac{55}{2752} a^{7} - \frac{179}{5504} a^{6} + \frac{905}{5504} a^{5} + \frac{479}{2752} a^{4} - \frac{1815}{5504} a^{3} + \frac{315}{2752} a^{2} + \frac{479}{1376} a + \frac{53}{688}$, $\frac{1}{25967929456256} a^{15} + \frac{375053701}{25967929456256} a^{14} - \frac{1386747107}{25967929456256} a^{13} + \frac{3253309307}{6491982364064} a^{12} - \frac{303482001389}{25967929456256} a^{11} + \frac{702333359805}{25967929456256} a^{10} - \frac{328275928615}{12983964728128} a^{9} + \frac{1742320300821}{25967929456256} a^{8} + \frac{2715331519143}{25967929456256} a^{7} + \frac{1113048303293}{6491982364064} a^{6} - \frac{4248681254619}{25967929456256} a^{5} + \frac{1924299854867}{25967929456256} a^{4} + \frac{1903072686149}{25967929456256} a^{3} - \frac{5383914861761}{12983964728128} a^{2} - \frac{2821514853293}{6491982364064} a - \frac{510337497185}{3245991182032}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{120063}{123949564} a^{15} - \frac{20970935}{3966386048} a^{14} + \frac{2744099}{1983193024} a^{13} + \frac{177010195}{3966386048} a^{12} - \frac{355719513}{3966386048} a^{11} - \frac{188444327}{1983193024} a^{10} + \frac{1977175087}{3966386048} a^{9} - \frac{739133127}{3966386048} a^{8} - \frac{1874814317}{1983193024} a^{7} + \frac{5460261501}{3966386048} a^{6} + \frac{4670697417}{3966386048} a^{5} - \frac{4702654309}{1983193024} a^{4} + \frac{2422555561}{3966386048} a^{3} + \frac{9880328663}{1983193024} a^{2} - \frac{1113477977}{991596512} a - \frac{1767959199}{495798256} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 452785.147047 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 7 conjugacy class representatives for $QD_{16}$ |
| Character table for $QD_{16}$ |
Intermediate fields
| \(\Q(\sqrt{-19}) \), \(\Q(\sqrt{57}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-3}, \sqrt{-19})\), 4.2.9747.1 x2, 4.0.513.1 x2, 8.0.95004009.1, 8.2.102889341747.1 x4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $19$ | 19.8.6.1 | $x^{8} + 57 x^{4} + 1444$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
| 19.8.6.1 | $x^{8} + 57 x^{4} + 1444$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |