Properties

Label 16.0.10564402173...1889.3
Degree $16$
Signature $[0, 8]$
Discriminant $17^{14}\cdot 89^{4}$
Root discriminant $36.64$
Ramified primes $17, 89$
Class number $28$ (GRH)
Class group $[28]$ (GRH)
Galois group $C_2\wr C_4$ (as 16T158)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![28561, 0, 63882, 0, 63519, 0, 28944, 0, 8753, 0, 1728, 0, 231, 0, 18, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 + 18*x^14 + 231*x^12 + 1728*x^10 + 8753*x^8 + 28944*x^6 + 63519*x^4 + 63882*x^2 + 28561)
 
gp: K = bnfinit(x^16 + 18*x^14 + 231*x^12 + 1728*x^10 + 8753*x^8 + 28944*x^6 + 63519*x^4 + 63882*x^2 + 28561, 1)
 

Normalized defining polynomial

\( x^{16} + 18 x^{14} + 231 x^{12} + 1728 x^{10} + 8753 x^{8} + 28944 x^{6} + 63519 x^{4} + 63882 x^{2} + 28561 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(10564402173046133902941889=17^{14}\cdot 89^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $36.64$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $17, 89$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{2}$, $\frac{1}{12} a^{8} - \frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{4} a^{2} + \frac{1}{12}$, $\frac{1}{12} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{4} a^{3} + \frac{1}{12} a$, $\frac{1}{12} a^{10} + \frac{1}{3} a^{2} + \frac{1}{4}$, $\frac{1}{12} a^{11} + \frac{1}{3} a^{3} + \frac{1}{4} a$, $\frac{1}{72} a^{12} - \frac{1}{24} a^{11} + \frac{1}{36} a^{10} - \frac{1}{72} a^{8} + \frac{5}{24} a^{6} - \frac{5}{72} a^{4} - \frac{1}{6} a^{3} - \frac{11}{36} a^{2} - \frac{1}{8} a + \frac{17}{72}$, $\frac{1}{936} a^{13} + \frac{5}{936} a^{11} + \frac{23}{936} a^{9} - \frac{1}{24} a^{8} + \frac{17}{312} a^{7} + \frac{1}{8} a^{6} - \frac{113}{936} a^{5} + \frac{1}{8} a^{4} - \frac{23}{468} a^{3} - \frac{3}{8} a^{2} - \frac{227}{468} a + \frac{11}{24}$, $\frac{1}{316376748792} a^{14} - \frac{91983133}{316376748792} a^{12} + \frac{13048640303}{316376748792} a^{10} - \frac{1}{24} a^{9} + \frac{4253167637}{105458916264} a^{8} + \frac{1}{8} a^{7} - \frac{21586306829}{316376748792} a^{6} + \frac{1}{8} a^{5} - \frac{6653664755}{158188374396} a^{4} + \frac{1}{8} a^{3} + \frac{29063317553}{79094187198} a^{2} - \frac{1}{24} a - \frac{6871488}{26000719}$, $\frac{1}{4112897734296} a^{15} - \frac{91983133}{4112897734296} a^{13} + \frac{39413369369}{4112897734296} a^{11} - \frac{1}{24} a^{10} + \frac{4253167637}{1370965911432} a^{9} - \frac{1}{24} a^{8} + \frac{927543939547}{4112897734296} a^{7} + \frac{1}{8} a^{6} + \frac{467911458433}{2056448867148} a^{5} + \frac{1}{8} a^{4} + \frac{47487570109}{514112216787} a^{3} - \frac{1}{24} a^{2} + \frac{622532023}{1352037388} a + \frac{1}{3}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{28}$, which has order $28$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 39185.4543582 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\wr C_4$ (as 16T158):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 64
The 13 conjugacy class representatives for $C_2\wr C_4$
Character table for $C_2\wr C_4$

Intermediate fields

\(\Q(\sqrt{17}) \), 4.0.437257.1, 4.4.4913.1, 4.0.25721.1, 8.0.3250292628833.1 x2, 8.4.36520141897.1 x2, 8.0.191193684049.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 8 siblings: data not computed
Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/13.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{8}$ R ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$17$17.8.7.1$x^{8} - 1377$$8$$1$$7$$C_8$$[\ ]_{8}$
17.8.7.1$x^{8} - 1377$$8$$1$$7$$C_8$$[\ ]_{8}$
$89$89.2.0.1$x^{2} - x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$
89.2.1.2$x^{2} + 267$$2$$1$$1$$C_2$$[\ ]_{2}$
89.2.0.1$x^{2} - x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$
89.2.1.2$x^{2} + 267$$2$$1$$1$$C_2$$[\ ]_{2}$
89.2.1.2$x^{2} + 267$$2$$1$$1$$C_2$$[\ ]_{2}$
89.2.0.1$x^{2} - x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$
89.2.1.2$x^{2} + 267$$2$$1$$1$$C_2$$[\ ]_{2}$
89.2.0.1$x^{2} - x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$