Normalized defining polynomial
\( x^{16} - 2 x^{15} - 26 x^{14} + 104 x^{13} - 239 x^{12} + 290 x^{11} + 3372 x^{10} - 24160 x^{9} + 135908 x^{8} - 592576 x^{7} + 1771924 x^{6} - 3671311 x^{5} + 5411845 x^{4} - 5547846 x^{3} + 3633675 x^{2} - 1274255 x + 176983 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(105305708997757955232277716721=11^{8}\cdot 53^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $65.15$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{11} a^{10} + \frac{1}{11} a^{9} - \frac{2}{11} a^{5} - \frac{3}{11} a^{4} + \frac{2}{11} a^{3} - \frac{4}{11} a^{2} - \frac{4}{11} a + \frac{3}{11}$, $\frac{1}{11} a^{11} - \frac{1}{11} a^{9} - \frac{2}{11} a^{6} - \frac{1}{11} a^{5} + \frac{5}{11} a^{4} + \frac{5}{11} a^{3} - \frac{4}{11} a - \frac{3}{11}$, $\frac{1}{33} a^{12} + \frac{4}{11} a^{9} + \frac{1}{3} a^{8} + \frac{3}{11} a^{7} + \frac{10}{33} a^{6} + \frac{1}{11} a^{5} - \frac{3}{11} a^{4} - \frac{3}{11} a^{3} + \frac{14}{33} a^{2} + \frac{5}{11} a + \frac{14}{33}$, $\frac{1}{33} a^{13} - \frac{1}{33} a^{9} + \frac{3}{11} a^{8} + \frac{10}{33} a^{7} + \frac{1}{11} a^{6} + \frac{5}{11} a^{5} - \frac{2}{11} a^{4} - \frac{10}{33} a^{3} - \frac{1}{11} a^{2} - \frac{4}{33} a - \frac{1}{11}$, $\frac{1}{2533377} a^{14} + \frac{9813}{844459} a^{13} + \frac{29240}{2533377} a^{12} - \frac{5977}{844459} a^{11} - \frac{2836}{2533377} a^{10} - \frac{226574}{844459} a^{9} - \frac{229555}{2533377} a^{8} - \frac{144105}{844459} a^{7} - \frac{92791}{361911} a^{6} - \frac{210083}{844459} a^{5} + \frac{112844}{2533377} a^{4} - \frac{234643}{844459} a^{3} - \frac{410805}{844459} a^{2} - \frac{14472}{120637} a - \frac{758705}{2533377}$, $\frac{1}{4364897891331156984341715700868577} a^{15} + \frac{460083155604183389821230848}{4364897891331156984341715700868577} a^{14} - \frac{1351050630220292886312395855098}{132269633070641120737627748511169} a^{13} + \frac{5683743142248128400667882547096}{1454965963777052328113905233622859} a^{12} - \frac{43724111031950850495014854447021}{4364897891331156984341715700868577} a^{11} + \frac{134671659190563406307522127086026}{4364897891331156984341715700868577} a^{10} - \frac{1764980520303694061906777222567786}{4364897891331156984341715700868577} a^{9} + \frac{285458724773858610167294807962484}{4364897891331156984341715700868577} a^{8} + \frac{5209336202377654333541925513466}{1454965963777052328113905233622859} a^{7} + \frac{58868348343570522649467946185900}{1454965963777052328113905233622859} a^{6} + \frac{767968842090570445227826053092693}{4364897891331156984341715700868577} a^{5} - \frac{1761388059933621624663408207867260}{4364897891331156984341715700868577} a^{4} + \frac{312206700995065704020560523483510}{4364897891331156984341715700868577} a^{3} - \frac{911344880835395023466951145438680}{4364897891331156984341715700868577} a^{2} - \frac{645454763963073156986000129644238}{1454965963777052328113905233622859} a + \frac{180011234759862586141638706518772}{1454965963777052328113905233622859}$
Class group and class number
$C_{3}\times C_{6}$, which has order $18$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5314852.37338 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 7 conjugacy class representatives for $QD_{16}$ |
| Character table for $QD_{16}$ |
Intermediate fields
| \(\Q(\sqrt{-583}) \), \(\Q(\sqrt{53}) \), \(\Q(\sqrt{-11}) \), \(\Q(\sqrt{-11}, \sqrt{53})\), 4.2.30899.1 x2, 4.0.6413.1 x2, 8.0.115524532321.1, 8.2.29500764662699.1 x4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $53$ | 53.4.3.1 | $x^{4} - 53$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 53.4.3.1 | $x^{4} - 53$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 53.4.3.1 | $x^{4} - 53$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 53.4.3.1 | $x^{4} - 53$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |