/* Data is in the following format Note, if the class group has not been computed, it, the class number, the fundamental units, regulator and whether grh was assumed are all 0. [polynomial, degree, t-number of Galois group, signature [r,s], discriminant, list of ramifying primes, integral basis as polynomials in a, 1 if it is a cm field otherwise 0, class number, class group structure, 1 if grh was assumed and 0 if not, fundamental units, regulator, list of subfields each as a pair [polynomial, number of subfields isomorphic to one defined by this polynomial] ] */ [x^16 + 5*x^14 + 83*x^12 + 370*x^10 + 2535*x^8 + 9358*x^6 + 20846*x^4 - 6808*x^2 + 529, 16, 163, [0, 8], 1051141675669222288577809681, [23, 41], [1, a, a^2, a^3, a^4, a^5, a^6, a^7, 1/2*a^8 - 1/2*a^7 - 1/2*a^6 - 1/2*a^4 - 1/2, 1/2*a^9 - 1/2*a^6 - 1/2*a^5 - 1/2*a^4 - 1/2*a - 1/2, 1/2*a^10 - 1/2*a^7 - 1/2*a^6 - 1/2*a^5 - 1/2*a^2 - 1/2*a, 1/2*a^11 - 1/2*a^4 - 1/2*a^3 - 1/2*a^2 - 1/2, 1/6*a^12 - 1/6*a^10 - 1/2*a^7 - 1/2*a^6 - 1/2*a^4 - 1/2*a^3 + 1/6*a^2 + 1/3, 1/6*a^13 - 1/6*a^11 - 1/2*a^6 - 1/2*a^5 + 1/6*a^3 + 1/3*a - 1/2, 1/20498811258522*a^14 + 1476284438717/20498811258522*a^12 - 21172652980/3416468543087*a^10 - 633314281688/3416468543087*a^8 - 1/2*a^7 + 1739756516105/6832937086174*a^6 - 8056236564635/20498811258522*a^4 - 1529130444023/10249405629261*a^2 - 1/2*a - 66833417038/148542110569, 1/471472658946006*a^15 - 10896133664051/157157552982002*a^13 + 6769419127234/235736329473003*a^11 - 14299188454036/78578776491001*a^9 - 31586572901274/78578776491001*a^7 - 1/2*a^6 + 217430687279107/471472658946006*a^5 - 1/2*a^4 + 7462049785862/78578776491001*a^3 - 1/2*a^2 - 3914053015339/10249405629261*a - 1/2], 0, 12, [2, 6], 1, [ (1211034533)/(3416468543087)*a^(14) + (6047755027)/(3416468543087)*a^(12) + (102158919194)/(3416468543087)*a^(10) + (461639889919)/(3416468543087)*a^(8) + (3181617047902)/(3416468543087)*a^(6) + (12023876669269)/(3416468543087)*a^(4) + (27816215193864)/(3416468543087)*a^(2) - (157689041265)/(148542110569) , (172669463882)/(235736329473003)*a^(15) + (4961355249)/(6832937086174)*a^(14) + (830660408927)/(235736329473003)*a^(13) + (25618276367)/(6832937086174)*a^(12) + (14195164883267)/(235736329473003)*a^(11) + (414862850013)/(6832937086174)*a^(10) + (20355264111482)/(78578776491001)*a^(9) + (948649994914)/(3416468543087)*a^(8) + (142415823791406)/(78578776491001)*a^(7) + (6403133595227)/(3416468543087)*a^(6) + (3055189897783327)/(471472658946006)*a^(5) + (47780479986605)/(6832937086174)*a^(4) + (3328283718425213)/(235736329473003)*a^(3) + (109462538218605)/(6832937086174)*a^(2) - (85578052623242)/(10249405629261)*a - (806572362138)/(148542110569) , (1730793645323)/(471472658946006)*a^(15) + (5807744286)/(3416468543087)*a^(14) + (1479572193119)/(78578776491001)*a^(13) + (29723199038)/(3416468543087)*a^(12) + (144858028507117)/(471472658946006)*a^(11) + (974315234221)/(6832937086174)*a^(10) + (219867637625783)/(157157552982002)*a^(9) + (2214437124615)/(3416468543087)*a^(8) + (1492537761112051)/(157157552982002)*a^(7) + (15097346466660)/(3416468543087)*a^(6) + (8404889618453446)/(235736329473003)*a^(5) + (56689933314972)/(3416468543087)*a^(4) + (12809123371374433)/(157157552982002)*a^(3) + (130386172990703)/(3416468543087)*a^(2) - (138345999494732)/(10249405629261)*a - (1888927850661)/(297084221138) , (47354524240)/(235736329473003)*a^(15) + (86413550457)/(78578776491001)*a^(13) + (4125079617506)/(235736329473003)*a^(11) + (6263042668567)/(78578776491001)*a^(9) + (44607874997619)/(78578776491001)*a^(7) + (474200496742003)/(235736329473003)*a^(5) + (424497023880414)/(78578776491001)*a^(3) - (12029508906662)/(10249405629261)*a , (14793552685)/(7991062016034)*a^(15) - (6133137697)/(6832937086174)*a^(14) + (26424560483)/(2663687338678)*a^(13) - (21486212673)/(6832937086174)*a^(12) + (1259583361553)/(7991062016034)*a^(11) - (496882952245)/(6832937086174)*a^(10) + (1954220779003)/(2663687338678)*a^(9) - (1644744192575)/(6832937086174)*a^(8) + (13268719937873)/(2663687338678)*a^(7) - (14635929488825)/(6832937086174)*a^(6) + (148259931530329)/(7991062016034)*a^(5) - (43459441291555)/(6832937086174)*a^(4) + (122538840349047)/(2663687338678)*a^(3) - (96668108942439)/(6832937086174)*a^(2) - (2727169992815)/(347437478958)*a + (369464311174)/(148542110569) , (14793552685)/(7991062016034)*a^(15) + (6133137697)/(6832937086174)*a^(14) + (26424560483)/(2663687338678)*a^(13) + (21486212673)/(6832937086174)*a^(12) + (1259583361553)/(7991062016034)*a^(11) + (496882952245)/(6832937086174)*a^(10) + (1954220779003)/(2663687338678)*a^(9) + (1644744192575)/(6832937086174)*a^(8) + (13268719937873)/(2663687338678)*a^(7) + (14635929488825)/(6832937086174)*a^(6) + (148259931530329)/(7991062016034)*a^(5) + (43459441291555)/(6832937086174)*a^(4) + (122538840349047)/(2663687338678)*a^(3) + (96668108942439)/(6832937086174)*a^(2) - (2727169992815)/(347437478958)*a - (369464311174)/(148542110569) , (2410961337392)/(78578776491001)*a^(15) + (16030054185)/(3416468543087)*a^(14) + (24087636523285)/(157157552982002)*a^(13) + (83962423359)/(3416468543087)*a^(12) + (199716468841426)/(78578776491001)*a^(11) + (1334872921588)/(3416468543087)*a^(10) + (890792947374287)/(78578776491001)*a^(9) + (12286666629607)/(6832937086174)*a^(8) + (12163880954836667)/(157157552982002)*a^(7) + (41019846365278)/(3416468543087)*a^(6) + (45007665912475863)/(157157552982002)*a^(5) + (151995261599645)/(3416468543087)*a^(4) + (49495254901359770)/(78578776491001)*a^(3) + (692969637678473)/(6832937086174)*a^(2) - (763647707498050)/(3416468543087)*a - (19041268172629)/(297084221138) ], 3737739.1801, [[x^2 - x + 6, 1], [x^4 - x^3 + x^2 + 14*x + 12, 1], [x^8 + 26*x^6 - 114*x^5 - 249*x^4 + 404*x^3 + 1587*x^2 + 7795*x + 11619, 1], [x^8 - x^7 + 3*x^6 - 3*x^5 + 16*x^4 + x^3 + 41*x^2 + 23, 1], [x^8 - 3*x^7 + 12*x^6 - 35*x^5 + 67*x^4 - 70*x^3 + 48*x^2 - 24*x + 16, 1]]]