Normalized defining polynomial
\( x^{16} - 21 x^{14} - 18 x^{13} + 198 x^{12} + 307 x^{11} - 827 x^{10} - 1987 x^{9} + 1141 x^{8} + 5673 x^{7} + 2326 x^{6} - 5323 x^{5} - 7132 x^{4} - 8046 x^{3} - 1212 x^{2} + 14440 x + 15613 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(10505857648455357927237=3^{10}\cdot 37^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.79$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{16754257869586685866264545991} a^{15} - \frac{2531359818987833784963611837}{16754257869586685866264545991} a^{14} - \frac{2896699456652765467278406538}{16754257869586685866264545991} a^{13} - \frac{2555689201104958604776142992}{16754257869586685866264545991} a^{12} + \frac{1487899917626815443172127463}{16754257869586685866264545991} a^{11} + \frac{4942449168688500573528346574}{16754257869586685866264545991} a^{10} + \frac{8099831945051761768046133684}{16754257869586685866264545991} a^{9} + \frac{2483498417974905376737184184}{16754257869586685866264545991} a^{8} + \frac{5404886017297954198872798124}{16754257869586685866264545991} a^{7} - \frac{6365965199311082798121898926}{16754257869586685866264545991} a^{6} - \frac{6955681529397965287050623591}{16754257869586685866264545991} a^{5} - \frac{3443551290909715875741249243}{16754257869586685866264545991} a^{4} - \frac{3602697132432509507733753266}{16754257869586685866264545991} a^{3} + \frac{4942574352516812641824009045}{16754257869586685866264545991} a^{2} - \frac{2445514282803487804867689969}{16754257869586685866264545991} a - \frac{5556445597512573887445135371}{16754257869586685866264545991}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{27090287208059}{420877530703281937} a^{15} + \frac{225972348211641}{420877530703281937} a^{14} - \frac{159672921765867}{420877530703281937} a^{13} - \frac{4920426238551730}{420877530703281937} a^{12} - \frac{5744585827695910}{420877530703281937} a^{11} + \frac{40576099477058446}{420877530703281937} a^{10} + \frac{92798263130074909}{420877530703281937} a^{9} - \frac{103646249497499257}{420877530703281937} a^{8} - \frac{438756195889218427}{420877530703281937} a^{7} - \frac{90835799299341562}{420877530703281937} a^{6} + \frac{738400391950402617}{420877530703281937} a^{5} + \frac{695139109457382231}{420877530703281937} a^{4} + \frac{229375687559108869}{420877530703281937} a^{3} - \frac{181459688065996968}{420877530703281937} a^{2} - \frac{1532547884274884592}{420877530703281937} a - \frac{1558127497796580448}{420877530703281937} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 30987.5420577 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2^3\times C_4).D_4$ (as 16T675):
| A solvable group of order 256 |
| The 31 conjugacy class representatives for $(C_2^3\times C_4).D_4$ |
| Character table for $(C_2^3\times C_4).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 4.0.333.1, 8.0.4102893.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $16$ | R | $16$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | $16$ | ${\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{6}$ | $16$ | $16$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
| $37$ | 37.4.3.4 | $x^{4} + 296$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 37.4.2.2 | $x^{4} - 37 x^{2} + 6845$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 37.8.6.2 | $x^{8} + 333 x^{4} + 34225$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |