Properties

Label 16.0.10504372386...000.66
Degree $16$
Signature $[0, 8]$
Discriminant $2^{48}\cdot 3^{8}\cdot 5^{12}\cdot 13^{12}$
Root discriminant $317.20$
Ramified primes $2, 3, 5, 13$
Class number $213073920$ (GRH)
Class group $[2, 2, 4, 8, 408, 4080]$ (GRH)
Galois group $C_4^2$ (as 16T4)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![566850881025, 0, 936943605000, 0, 314044277040, 0, 27910775880, 0, 991343691, 0, 17010864, 0, 148356, 0, 624, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 + 624*x^14 + 148356*x^12 + 17010864*x^10 + 991343691*x^8 + 27910775880*x^6 + 314044277040*x^4 + 936943605000*x^2 + 566850881025)
 
gp: K = bnfinit(x^16 + 624*x^14 + 148356*x^12 + 17010864*x^10 + 991343691*x^8 + 27910775880*x^6 + 314044277040*x^4 + 936943605000*x^2 + 566850881025, 1)
 

Normalized defining polynomial

\( x^{16} + 624 x^{14} + 148356 x^{12} + 17010864 x^{10} + 991343691 x^{8} + 27910775880 x^{6} + 314044277040 x^{4} + 936943605000 x^{2} + 566850881025 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(10504372386022553663859326976000000000000=2^{48}\cdot 3^{8}\cdot 5^{12}\cdot 13^{12}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $317.20$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 13$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(3120=2^{4}\cdot 3\cdot 5\cdot 13\)
Dirichlet character group:    $\lbrace$$\chi_{3120}(1,·)$, $\chi_{3120}(2887,·)$, $\chi_{3120}(649,·)$, $\chi_{3120}(2699,·)$, $\chi_{3120}(1997,·)$, $\chi_{3120}(2579,·)$, $\chi_{3120}(1877,·)$, $\chi_{3120}(2263,·)$, $\chi_{3120}(2521,·)$, $\chi_{3120}(1373,·)$, $\chi_{3120}(1249,·)$, $\chi_{3120}(1253,·)$, $\chi_{3120}(1451,·)$, $\chi_{3120}(2287,·)$, $\chi_{3120}(1331,·)$, $\chi_{3120}(1663,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $\frac{1}{3} a^{2}$, $\frac{1}{3} a^{3}$, $\frac{1}{117} a^{4}$, $\frac{1}{117} a^{5}$, $\frac{1}{351} a^{6}$, $\frac{1}{351} a^{7}$, $\frac{1}{13689} a^{8}$, $\frac{1}{150579} a^{9} - \frac{1}{1287} a^{7} - \frac{4}{1287} a^{5} + \frac{1}{33} a^{3} + \frac{5}{11} a$, $\frac{1}{451737} a^{10} + \frac{5}{150579} a^{8} - \frac{4}{3861} a^{6} + \frac{2}{1287} a^{4} + \frac{5}{33} a^{2}$, $\frac{1}{451737} a^{11} - \frac{3}{11} a$, $\frac{1}{56464866315} a^{12} - \frac{74}{131619735} a^{10} - \frac{802}{43873245} a^{8} + \frac{157}{124995} a^{6} - \frac{1376}{374985} a^{4} - \frac{1889}{21153} a^{2} - \frac{241}{641}$, $\frac{1}{282324331575} a^{13} - \frac{2408}{2413028475} a^{11} - \frac{268}{268114275} a^{9} + \frac{66823}{61872525} a^{7} - \frac{5521}{20624175} a^{5} - \frac{607}{105765} a^{3} - \frac{6497}{35255} a$, $\frac{1}{889828981285090275} a^{14} - \frac{800027}{296609660428363425} a^{12} + \frac{4178621423}{7605375908419575} a^{10} - \frac{6767197546}{2535125302806525} a^{8} + \frac{87276511759}{65003212892475} a^{6} - \frac{3906114871}{1444515842055} a^{4} + \frac{1477412713}{111116603235} a^{2} - \frac{16814227}{61221269}$, $\frac{1}{889828981285090275} a^{15} + \frac{83524}{98869886809454475} a^{13} - \frac{3410905753}{7605375908419575} a^{11} + \frac{2511535547}{845041767602175} a^{9} - \frac{78221196914}{65003212892475} a^{7} + \frac{53458862681}{21667737630825} a^{5} + \frac{841373783}{22223320647} a^{3} - \frac{14772733}{3367169795} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}\times C_{4}\times C_{8}\times C_{408}\times C_{4080}$, which has order $213073920$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 833353.4796729003 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_4^2$ (as 16T4):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 16
The 16 conjugacy class representatives for $C_4^2$
Character table for $C_4^2$

Intermediate fields

\(\Q(\sqrt{130}) \), \(\Q(\sqrt{26}) \), \(\Q(\sqrt{5}) \), 4.0.5061888000.6, \(\Q(\sqrt{5}, \sqrt{26})\), 4.0.5061888000.8, 4.0.1012377600.4, 4.0.40495104.2, 4.4.8000.1, 4.4.338000.1, 8.0.25622710124544000000.4, 8.0.1024908404981760000.22, 8.8.29246464000000.7

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/11.1.0.1}{1} }^{16}$ R ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$3$3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$5$5.4.3.1$x^{4} - 5$$4$$1$$3$$C_4$$[\ ]_{4}$
5.4.3.1$x^{4} - 5$$4$$1$$3$$C_4$$[\ ]_{4}$
5.4.3.1$x^{4} - 5$$4$$1$$3$$C_4$$[\ ]_{4}$
5.4.3.1$x^{4} - 5$$4$$1$$3$$C_4$$[\ ]_{4}$
13Data not computed