Properties

Label 16.0.10498814783...9793.2
Degree $16$
Signature $[0, 8]$
Discriminant $13^{15}\cdot 29^{5}$
Root discriminant $31.72$
Ramified primes $13, 29$
Class number $2$ (GRH)
Class group $[2]$ (GRH)
Galois group 16T1192

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![87, -119, -308, 500, 819, -3211, 4810, -4485, 2808, -1079, 130, 91, -13, -44, 30, -8, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 8*x^15 + 30*x^14 - 44*x^13 - 13*x^12 + 91*x^11 + 130*x^10 - 1079*x^9 + 2808*x^8 - 4485*x^7 + 4810*x^6 - 3211*x^5 + 819*x^4 + 500*x^3 - 308*x^2 - 119*x + 87)
 
gp: K = bnfinit(x^16 - 8*x^15 + 30*x^14 - 44*x^13 - 13*x^12 + 91*x^11 + 130*x^10 - 1079*x^9 + 2808*x^8 - 4485*x^7 + 4810*x^6 - 3211*x^5 + 819*x^4 + 500*x^3 - 308*x^2 - 119*x + 87, 1)
 

Normalized defining polynomial

\( x^{16} - 8 x^{15} + 30 x^{14} - 44 x^{13} - 13 x^{12} + 91 x^{11} + 130 x^{10} - 1079 x^{9} + 2808 x^{8} - 4485 x^{7} + 4810 x^{6} - 3211 x^{5} + 819 x^{4} + 500 x^{3} - 308 x^{2} - 119 x + 87 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(1049881478310074616349793=13^{15}\cdot 29^{5}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $31.72$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $13, 29$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{622535795512320846393} a^{15} + \frac{107383507499881017104}{622535795512320846393} a^{14} - \frac{18674482748655798823}{622535795512320846393} a^{13} + \frac{64556329387672736908}{207511931837440282131} a^{12} + \frac{63584262174290967215}{622535795512320846393} a^{11} - \frac{54537122811835113487}{207511931837440282131} a^{10} - \frac{181770362837282230856}{622535795512320846393} a^{9} - \frac{287707284855687661582}{622535795512320846393} a^{8} + \frac{272944257881289213071}{622535795512320846393} a^{7} - \frac{60917525144794256629}{622535795512320846393} a^{6} - \frac{1449726962406714298}{207511931837440282131} a^{5} + \frac{118549455558698440763}{622535795512320846393} a^{4} - \frac{153783544468661697577}{622535795512320846393} a^{3} + \frac{141656804420075944135}{622535795512320846393} a^{2} + \frac{133384534807525592579}{622535795512320846393} a - \frac{11191796403866705309}{207511931837440282131}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 495802.727804 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1192:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 1024
The 88 conjugacy class representatives for t16n1192 are not computed
Character table for t16n1192 is not computed

Intermediate fields

\(\Q(\sqrt{13}) \), 4.0.2197.1, 8.0.1819706993.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/3.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{4}$ $16$ $16$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{8}$ $16$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
13Data not computed
$29$$\Q_{29}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{29}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{29}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{29}$$x + 2$$1$$1$$0$Trivial$[\ ]$
29.4.3.1$x^{4} - 29$$4$$1$$3$$C_4$$[\ ]_{4}$
29.4.0.1$x^{4} - x + 19$$1$$4$$0$$C_4$$[\ ]^{4}$
29.4.2.2$x^{4} - 29 x^{2} + 2523$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$