Normalized defining polynomial
\( x^{16} - 8 x^{15} + 132 x^{14} - 784 x^{13} + 6578 x^{12} - 29640 x^{11} + 161878 x^{10} - 555422 x^{9} + 2130764 x^{8} - 5486248 x^{7} + 15012390 x^{6} - 27873848 x^{5} + 52839433 x^{4} - 64659186 x^{3} + 76467296 x^{2} - 48013336 x + 22193008 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(10483151353726139536553735554369=17^{14}\cdot 53^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $86.85$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{204} a^{8} - \frac{1}{51} a^{7} - \frac{11}{51} a^{6} + \frac{11}{51} a^{5} - \frac{1}{102} a^{4} - \frac{10}{51} a^{3} - \frac{41}{204} a^{2} + \frac{43}{102} a - \frac{4}{51}$, $\frac{1}{204} a^{9} + \frac{7}{34} a^{7} - \frac{5}{34} a^{6} - \frac{5}{34} a^{5} - \frac{4}{17} a^{4} - \frac{33}{68} a^{3} - \frac{13}{34} a^{2} + \frac{11}{102} a - \frac{16}{51}$, $\frac{1}{204} a^{10} + \frac{3}{17} a^{7} - \frac{3}{34} a^{6} + \frac{7}{34} a^{5} - \frac{5}{68} a^{4} - \frac{5}{34} a^{3} + \frac{5}{102} a^{2} + \frac{49}{102} a + \frac{5}{17}$, $\frac{1}{204} a^{11} + \frac{2}{17} a^{7} - \frac{1}{34} a^{6} + \frac{11}{68} a^{5} + \frac{7}{34} a^{4} + \frac{11}{102} a^{3} - \frac{29}{102} a^{2} - \frac{13}{34} a - \frac{3}{17}$, $\frac{1}{12758160} a^{12} - \frac{1}{2126360} a^{11} + \frac{551}{425272} a^{10} - \frac{1337}{850544} a^{9} - \frac{6877}{3189540} a^{8} - \frac{196679}{797385} a^{7} + \frac{39223}{2551632} a^{6} + \frac{1099403}{6379080} a^{5} - \frac{3139}{2126360} a^{4} + \frac{1061969}{4252720} a^{3} - \frac{219193}{3189540} a^{2} - \frac{1183}{6018} a + \frac{8491}{30090}$, $\frac{1}{12758160} a^{13} + \frac{2749}{2126360} a^{11} + \frac{3317}{2551632} a^{10} - \frac{3793}{2126360} a^{9} + \frac{677}{3189540} a^{8} + \frac{2953771}{12758160} a^{7} + \frac{203047}{1594770} a^{6} - \frac{229859}{6379080} a^{5} - \frac{131941}{750480} a^{4} - \frac{6187}{21624} a^{3} - \frac{79311}{1063180} a^{2} + \frac{1817}{10030} a - \frac{341}{885}$, $\frac{1}{12758160} a^{14} - \frac{3177}{4252720} a^{11} + \frac{2911}{6379080} a^{10} + \frac{7909}{6379080} a^{9} + \frac{3643}{12758160} a^{8} - \frac{82828}{797385} a^{7} + \frac{8672}{797385} a^{6} - \frac{2027921}{12758160} a^{5} + \frac{776153}{6379080} a^{4} - \frac{363157}{1275816} a^{3} + \frac{163133}{531590} a^{2} - \frac{13459}{30090} a + \frac{1591}{5015}$, $\frac{1}{661395772560} a^{15} + \frac{25913}{661395772560} a^{14} - \frac{802}{41337235785} a^{13} - \frac{30}{2755815719} a^{12} + \frac{44192923}{44093051504} a^{11} + \frac{66472007}{330697886280} a^{10} + \frac{168796571}{82674471570} a^{9} + \frac{504559149}{220465257520} a^{8} + \frac{9565133767}{41337235785} a^{7} + \frac{15913674461}{82674471570} a^{6} + \frac{8867416457}{44093051504} a^{5} - \frac{67518294871}{330697886280} a^{4} - \frac{6712283867}{220465257520} a^{3} + \frac{75437128543}{165348943140} a^{2} + \frac{146491089}{519965230} a - \frac{45562199}{91758570}$
Class group and class number
$C_{11}\times C_{44}$, which has order $484$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6878292.5579 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 7 conjugacy class representatives for $QD_{16}$ |
| Character table for $QD_{16}$ |
Intermediate fields
| \(\Q(\sqrt{53}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{901}) \), \(\Q(\sqrt{17}, \sqrt{53})\), 4.4.260389.1 x2, 4.4.13800617.1 x2, 8.8.190457029580689.1, 8.0.61089990620221.2 x4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.8.7.4 | $x^{8} - 12393$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 17.8.7.4 | $x^{8} - 12393$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |
| $53$ | 53.2.1.1 | $x^{2} - 53$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 53.2.1.1 | $x^{2} - 53$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 53.2.1.1 | $x^{2} - 53$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 53.2.1.1 | $x^{2} - 53$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 53.2.1.1 | $x^{2} - 53$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 53.2.1.1 | $x^{2} - 53$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 53.2.1.1 | $x^{2} - 53$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 53.2.1.1 | $x^{2} - 53$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |