Normalized defining polynomial
\( x^{16} - 4 x^{15} + 52 x^{14} - 204 x^{13} + 1478 x^{12} - 5224 x^{11} + 25196 x^{10} - 69432 x^{9} + 224498 x^{8} - 402184 x^{7} + 874144 x^{6} - 743520 x^{5} + 1448468 x^{4} + 35312 x^{3} + 1960928 x^{2} + 899376 x + 1069756 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(10455582754471936000000000000=2^{40}\cdot 5^{12}\cdot 79^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $56.39$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 79$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{2} a^{10}$, $\frac{1}{2} a^{11}$, $\frac{1}{2} a^{12}$, $\frac{1}{6} a^{13} - \frac{1}{6} a^{12} + \frac{1}{6} a^{11} - \frac{1}{6} a^{10} + \frac{1}{6} a^{8} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{5058} a^{14} + \frac{41}{843} a^{13} - \frac{69}{281} a^{12} + \frac{19}{562} a^{11} - \frac{224}{2529} a^{10} - \frac{265}{2529} a^{9} + \frac{559}{5058} a^{8} - \frac{73}{281} a^{7} - \frac{1084}{2529} a^{6} + \frac{304}{843} a^{5} + \frac{202}{843} a^{4} + \frac{280}{843} a^{3} - \frac{797}{2529} a^{2} + \frac{887}{2529} a - \frac{1153}{2529}$, $\frac{1}{179743387813414842435675821215284777697494} a^{15} + \frac{1550125351635243067166615773551508471}{179743387813414842435675821215284777697494} a^{14} - \frac{4390492974941732128520647744509177914717}{59914462604471614145225273738428259232498} a^{13} - \frac{849348046444720400292748795983719777266}{9985743767411935690870878956404709872083} a^{12} + \frac{11228457119573322646114410055012856061521}{179743387813414842435675821215284777697494} a^{11} - \frac{97549910490617134311465604438481369}{14760892486935603386357544651004744822} a^{10} - \frac{7619510087125473444961659309228419731955}{89871693906707421217837910607642388848747} a^{9} - \frac{21857216797526439771413162336902024878737}{179743387813414842435675821215284777697494} a^{8} - \frac{22455194682217206425399140740798679367611}{89871693906707421217837910607642388848747} a^{7} + \frac{36530811316363202784706510573947621787676}{89871693906707421217837910607642388848747} a^{6} + \frac{2872093057721628356531537886117456935723}{29957231302235807072612636869214129616249} a^{5} - \frac{1159314026465263973926977810675556800401}{2723384663839618824782966988110375419659} a^{4} + \frac{10387362778028481113964480751802160412957}{89871693906707421217837910607642388848747} a^{3} - \frac{143786275755798529987816324496001003991}{730664178103312367624698460224734868689} a^{2} - \frac{12647034605705849997944192514856093182443}{89871693906707421217837910607642388848747} a - \frac{10255114368611774502108311362358915782717}{89871693906707421217837910607642388848747}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{170}$, which has order $2720$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7114.13535725 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4:C_2^2.C_2$ (as 16T317):
| A solvable group of order 128 |
| The 23 conjugacy class representatives for $C_2^4:C_2^2.C_2$ |
| Character table for $C_2^4:C_2^2.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{10}) \), 4.4.8000.1, \(\Q(\zeta_{20})^+\), \(\Q(\sqrt{2}, \sqrt{5})\), \(\Q(\zeta_{40})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $79$ | 79.2.1.2 | $x^{2} + 158$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 79.2.1.2 | $x^{2} + 158$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 79.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 79.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 79.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 79.2.1.2 | $x^{2} + 158$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 79.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 79.2.1.2 | $x^{2} + 158$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |