Normalized defining polynomial
\( x^{16} - 4 x^{15} + 70 x^{14} - 256 x^{13} + 2272 x^{12} - 7772 x^{11} + 44064 x^{10} - 129312 x^{9} + 533146 x^{8} - 1285200 x^{7} + 3829968 x^{6} - 6791264 x^{5} + 14169936 x^{4} - 15726656 x^{3} + 21996912 x^{2} - 10335520 x + 8602768 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(104071879720680162479570944=2^{36}\cdot 17^{6}\cdot 89^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.27$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{2} a^{10}$, $\frac{1}{4} a^{11} - \frac{1}{2} a^{3}$, $\frac{1}{12} a^{12} + \frac{1}{12} a^{11} + \frac{1}{6} a^{10} - \frac{1}{6} a^{8} + \frac{1}{3} a^{6} - \frac{1}{6} a^{4} - \frac{1}{2} a^{3} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{12} a^{13} + \frac{1}{12} a^{11} - \frac{1}{6} a^{10} - \frac{1}{6} a^{9} + \frac{1}{6} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{6} a^{5} - \frac{1}{3} a^{4} - \frac{1}{2} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{24} a^{14} - \frac{1}{6} a^{10} - \frac{1}{6} a^{9} + \frac{1}{3} a^{7} - \frac{1}{4} a^{6} + \frac{1}{3} a^{5} - \frac{1}{6} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{49666897192366736178082687686710799530283222744} a^{15} - \frac{132301834365925190717933312425523561694066899}{24833448596183368089041343843355399765141611372} a^{14} - \frac{273085737027659252062282962667681675322075291}{24833448596183368089041343843355399765141611372} a^{13} + \frac{54104443041422248012732098233684223715510417}{4138908099363894681506890640559233294190268562} a^{12} + \frac{647164118935689337542969910315863517030453448}{6208362149045842022260335960838849941285402843} a^{11} + \frac{2493040482850965429278669540060410106134584005}{12416724298091684044520671921677699882570805686} a^{10} + \frac{188553403054886888048653104945589412277795552}{2069454049681947340753445320279616647095134281} a^{9} + \frac{299627664259246105299323726833475498547801609}{4138908099363894681506890640559233294190268562} a^{8} - \frac{594162901613431638858435741899812567767904297}{8277816198727789363013781281118466588380537124} a^{7} - \frac{757932647791874122942651283276835789381418951}{4138908099363894681506890640559233294190268562} a^{6} - \frac{3053879480385310950667867070231163123972483776}{6208362149045842022260335960838849941285402843} a^{5} - \frac{2780882263583866595908974376761777820663750531}{6208362149045842022260335960838849941285402843} a^{4} + \frac{1107697513351312152149110296017784259829246387}{6208362149045842022260335960838849941285402843} a^{3} - \frac{926712951136802512101825580643205215910687099}{2069454049681947340753445320279616647095134281} a^{2} + \frac{1452192156240222836210606947262141416998537820}{6208362149045842022260335960838849941285402843} a - \frac{2934462805674205041345914441064107281264327027}{6208362149045842022260335960838849941285402843}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{12841097429160668758536680706856615}{92235189713967133804317492514519174363224} a^{15} + \frac{31772668368610170389379045581717345}{92235189713967133804317492514519174363224} a^{14} + \frac{288492199299987410765574916884576247}{46117594856983566902158746257259587181612} a^{13} + \frac{84904251631615797662580440614357284}{3843132904748630575179895521438298931801} a^{12} + \frac{1261383717396656650493421195185030714}{11529398714245891725539686564314896795403} a^{11} + \frac{14453589235738275502426022403979243241}{23058797428491783451079373128629793590806} a^{10} + \frac{1182505600322427988640899094235865492}{3843132904748630575179895521438298931801} a^{9} + \frac{45537012135093497093619669179102323762}{3843132904748630575179895521438298931801} a^{8} - \frac{178812835671606294532008839090648380675}{15372531618994522300719582085753195727204} a^{7} + \frac{2071498110138867775650490453100649207447}{15372531618994522300719582085753195727204} a^{6} - \frac{2248249646584571026960347142857146770625}{11529398714245891725539686564314896795403} a^{5} + \frac{18667803696391786255644897076837439102653}{23058797428491783451079373128629793590806} a^{4} - \frac{8132386428383308863719553294672056610949}{11529398714245891725539686564314896795403} a^{3} + \frac{5262063439787373423467895280685476937156}{3843132904748630575179895521438298931801} a^{2} + \frac{3496956813804015253453475283179987285443}{11529398714245891725539686564314896795403} a - \frac{3362444870180339476323621859838346130183}{11529398714245891725539686564314896795403} \) (order $8$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2861210.36565 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_2^4.C_2$ (as 16T657):
| A solvable group of order 256 |
| The 34 conjugacy class representatives for $C_2^3.C_2^4.C_2$ |
| Character table for $C_2^3.C_2^4.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-2}) \), 4.4.4352.1, 4.0.1088.2, \(\Q(\zeta_{8})\), 8.0.18939904.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.18.53 | $x^{8} + 2 x^{6} + 4 x^{3} + 2$ | $8$ | $1$ | $18$ | $D_4\times C_2$ | $[2, 2, 3]^{2}$ |
| 2.8.18.53 | $x^{8} + 2 x^{6} + 4 x^{3} + 2$ | $8$ | $1$ | $18$ | $D_4\times C_2$ | $[2, 2, 3]^{2}$ | |
| $17$ | 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 17.4.3.3 | $x^{4} + 51$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 17.4.3.3 | $x^{4} + 51$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $89$ | 89.2.1.2 | $x^{2} + 267$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 89.2.1.2 | $x^{2} + 267$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 89.2.1.2 | $x^{2} + 267$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 89.2.1.2 | $x^{2} + 267$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |