Normalized defining polynomial
\( x^{16} - 4 x^{15} + 66 x^{14} - 324 x^{13} + 2798 x^{12} - 13200 x^{11} + 73000 x^{10} - 289244 x^{9} + 1145051 x^{8} - 3647616 x^{7} + 10775414 x^{6} - 26323352 x^{5} + 57244536 x^{4} - 100180644 x^{3} + 143123840 x^{2} - 135856912 x + 77313634 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(104071879720680162479570944=2^{36}\cdot 17^{6}\cdot 89^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.27$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{8} a^{12} - \frac{1}{4} a^{11} + \frac{1}{4} a^{10} + \frac{1}{4} a^{9} - \frac{3}{8} a^{8} - \frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{8} a^{13} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} + \frac{1}{8} a^{9} + \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{56} a^{14} + \frac{1}{28} a^{13} + \frac{1}{28} a^{12} + \frac{13}{28} a^{11} - \frac{19}{56} a^{10} + \frac{3}{14} a^{9} + \frac{11}{28} a^{8} + \frac{3}{28} a^{6} + \frac{1}{7} a^{5} - \frac{3}{7} a^{4} + \frac{3}{14} a^{3} + \frac{13}{28} a^{2} + \frac{3}{7} a + \frac{1}{7}$, $\frac{1}{3963781762575012139114130245091896049652261962164408} a^{15} + \frac{1156427859958457772781535328907304739687134006451}{990945440643753034778532561272974012413065490541102} a^{14} - \frac{56769532060005630327507719645898935038665568858}{5444755168372269421860069017983373694577282915061} a^{13} - \frac{550500786695798451460789006468955853479106473159}{495472720321876517389266280636487006206532745270551} a^{12} - \frac{1291822728410976897975858861834821896415318826790951}{3963781762575012139114130245091896049652261962164408} a^{11} + \frac{319273148412473385416582871814258510312794647921251}{1981890881287506069557065122545948024826130981082204} a^{10} - \frac{27128648047007832865311603140982198156750448066863}{76226572357211771906040966251767231724081960810854} a^{9} + \frac{628962073336235795923915146562442813757804858003585}{1981890881287506069557065122545948024826130981082204} a^{8} - \frac{500042776704187618654397951994322584320096373251223}{1981890881287506069557065122545948024826130981082204} a^{7} + \frac{205865566276470719414631085951128412131100076605407}{495472720321876517389266280636487006206532745270551} a^{6} - \frac{490882880351559318650577613368481270151888340663091}{990945440643753034778532561272974012413065490541102} a^{5} - \frac{138914774676714779978928175600838139062773270840502}{495472720321876517389266280636487006206532745270551} a^{4} + \frac{14557957815299631979712893313704748345106022292679}{283127268755358009936723588935135432118018711583172} a^{3} - \frac{21652793760995776558611584400018994446856128186813}{76226572357211771906040966251767231724081960810854} a^{2} + \frac{80347688433943234071394072111755955301407780224111}{990945440643753034778532561272974012413065490541102} a - \frac{77438846045668573009552193288607041809052583818025}{990945440643753034778532561272974012413065490541102}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{8639361832890622549794948411923083292641}{33042804312932019599314184388765295222970031112} a^{15} + \frac{3530195762768803561368107669389344743496}{4130350539116502449914273048595661902871253889} a^{14} - \frac{10297481646816738605812821621696486267871}{635438544479461915371426622860871061980192906} a^{13} + \frac{2346479449368480448006446764959724712534917}{33042804312932019599314184388765295222970031112} a^{12} - \frac{21479258917137992490347547956264727995335771}{33042804312932019599314184388765295222970031112} a^{11} + \frac{11696872691272819487411558995552150897057337}{4130350539116502449914273048595661902871253889} a^{10} - \frac{20021025026801084144833271687223938880776775}{1270877088958923830742853245721742123960385812} a^{9} + \frac{1926150766056279154084671737381151642201998487}{33042804312932019599314184388765295222970031112} a^{8} - \frac{3699330683782849041094805322428911628331024981}{16521402156466009799657092194382647611485015556} a^{7} + \frac{10998794453181949256076639660529328671242924271}{16521402156466009799657092194382647611485015556} a^{6} - \frac{15206731624524713491694021791557821616523542779}{8260701078233004899828546097191323805742507778} a^{5} + \frac{67864561914429019708407962499783774609734564779}{16521402156466009799657092194382647611485015556} a^{4} - \frac{131709538821963912752830068913967506060531691929}{16521402156466009799657092194382647611485015556} a^{3} + \frac{7627960926370600673413303052039928523866999467}{635438544479461915371426622860871061980192906} a^{2} - \frac{54129732762252390792156258560852610000263899296}{4130350539116502449914273048595661902871253889} a + \frac{111196726194959047068725403972284504758179471451}{16521402156466009799657092194382647611485015556} \) (order $8$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3247748.4223 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_2^4.C_2$ (as 16T657):
| A solvable group of order 256 |
| The 34 conjugacy class representatives for $C_2^3.C_2^4.C_2$ |
| Character table for $C_2^3.C_2^4.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-2}) \), 4.4.4352.1, 4.0.1088.2, \(\Q(\zeta_{8})\), 8.0.18939904.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.18.53 | $x^{8} + 2 x^{6} + 4 x^{3} + 2$ | $8$ | $1$ | $18$ | $D_4\times C_2$ | $[2, 2, 3]^{2}$ |
| 2.8.18.53 | $x^{8} + 2 x^{6} + 4 x^{3} + 2$ | $8$ | $1$ | $18$ | $D_4\times C_2$ | $[2, 2, 3]^{2}$ | |
| $17$ | 17.4.3.3 | $x^{4} + 51$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 17.4.3.3 | $x^{4} + 51$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 89 | Data not computed | ||||||