/* Data is in the following format Note, if the class group has not been computed, it, the class number, the fundamental units, regulator and whether grh was assumed are all 0. [polynomial, degree, t-number of Galois group, signature [r,s], discriminant, list of ramifying primes, integral basis as polynomials in a, 1 if it is a cm field otherwise 0, class number, class group structure, 1 if grh was assumed and 0 if not, fundamental units, regulator, list of subfields each as a pair [polynomial, number of subfields isomorphic to one defined by this polynomial] ] */ [x^16 - 4*x^15 + 6*x^14 - 8*x^13 + 23*x^12 + 32*x^11 + 50*x^10 + 44*x^9 + 45*x^8 + 8*x^7 + 60*x^6 + 24*x^5 + 2*x^4 + 12*x^2 - 8*x + 2, 16, 1720, [0, 8], 1039792207867206959104, [2, 31], [1, a, a^2, a^3, a^4, a^5, a^6, a^7, a^8, a^9, a^10, a^11, a^12, a^13, a^14, 1/74691174319681*a^15 - 11692707968329/74691174319681*a^14 - 1835452690386/74691174319681*a^13 + 11025584271878/74691174319681*a^12 - 26484790650599/74691174319681*a^11 - 18526642910449/74691174319681*a^10 + 14226431101710/74691174319681*a^9 + 4003875138464/74691174319681*a^8 - 24725663180217/74691174319681*a^7 - 29978501707885/74691174319681*a^6 - 31539793151749/74691174319681*a^5 - 31447948233696/74691174319681*a^4 + 18265330958818/74691174319681*a^3 - 2555388473533/74691174319681*a^2 + 17811315730654/74691174319681*a - 1906615739512/74691174319681], 0, 1, [], 0, [ (17833174935633)/(74691174319681)*a^(15) - (61114324366689)/(74691174319681)*a^(14) + (71036867826420)/(74691174319681)*a^(13) - (102355779452985)/(74691174319681)*a^(12) + (362758498841003)/(74691174319681)*a^(11) + (760187421525701)/(74691174319681)*a^(10) + (1339210474753932)/(74691174319681)*a^(9) + (1428905108023715)/(74691174319681)*a^(8) + (1438151345215224)/(74691174319681)*a^(7) + (730902102135913)/(74691174319681)*a^(6) + (1249479934408610)/(74691174319681)*a^(5) + (981326693719880)/(74691174319681)*a^(4) + (505989929110936)/(74691174319681)*a^(3) + (158439764343754)/(74691174319681)*a^(2) + (201188753034788)/(74691174319681)*a - (27594765318571)/(74691174319681) , (32099466824388)/(74691174319681)*a^(15) - (122995238614007)/(74691174319681)*a^(14) + (173184987807372)/(74691174319681)*a^(13) - (235320101743152)/(74691174319681)*a^(12) + (715400535087391)/(74691174319681)*a^(11) + (1129477215068494)/(74691174319681)*a^(10) + (1824915265236239)/(74691174319681)*a^(9) + (1737743670901899)/(74691174319681)*a^(8) + (1653013440846487)/(74691174319681)*a^(7) + (532855913801147)/(74691174319681)*a^(6) + (1934923933141096)/(74691174319681)*a^(5) + (1115093614910319)/(74691174319681)*a^(4) + (346091675130602)/(74691174319681)*a^(3) + (77191510200419)/(74691174319681)*a^(2) + (272164137329308)/(74691174319681)*a - (97103831264727)/(74691174319681) , (49727528)/(553559089)*a^(15) - (212930157)/(553559089)*a^(14) + (381891912)/(553559089)*a^(13) - (582667141)/(553559089)*a^(12) + (1358775286)/(553559089)*a^(11) + (1203738522)/(553559089)*a^(10) + (2435395216)/(553559089)*a^(9) + (2847566182)/(553559089)*a^(8) + (2541368488)/(553559089)*a^(7) + (812220582)/(553559089)*a^(6) + (2637149880)/(553559089)*a^(5) - (399365245)/(553559089)*a^(4) + (36405020)/(553559089)*a^(3) + (521850816)/(553559089)*a^(2) - (338838716)/(553559089)*a - (1250231421)/(553559089) , (1591048353062)/(4393598489393)*a^(15) - (6310703674282)/(4393598489393)*a^(14) + (8942320215214)/(4393598489393)*a^(13) - (11040416253902)/(4393598489393)*a^(12) + (34593932988444)/(4393598489393)*a^(11) + (54193983515623)/(4393598489393)*a^(10) + (73446827662830)/(4393598489393)*a^(9) + (56561130160126)/(4393598489393)*a^(8) + (47087609790223)/(4393598489393)*a^(7) - (9540209863797)/(4393598489393)*a^(6) + (69971953582104)/(4393598489393)*a^(5) + (30864664850157)/(4393598489393)*a^(4) - (20504567319660)/(4393598489393)*a^(3) - (20519292108911)/(4393598489393)*a^(2) + (14677382582894)/(4393598489393)*a - (15104562070075)/(4393598489393) , (30318259995160)/(74691174319681)*a^(15) - (115249819012927)/(74691174319681)*a^(14) + (159897413683041)/(74691174319681)*a^(13) - (218495521369984)/(74691174319681)*a^(12) + (678776747447565)/(74691174319681)*a^(11) + (1059137050993556)/(74691174319681)*a^(10) + (1808015614953182)/(74691174319681)*a^(9) + (1582916566381582)/(74691174319681)*a^(8) + (1679497248690893)/(74691174319681)*a^(7) + (444919643095589)/(74691174319681)*a^(6) + (1832337363605655)/(74691174319681)*a^(5) + (992419333425085)/(74691174319681)*a^(4) + (287574211225259)/(74691174319681)*a^(3) - (118017729477135)/(74691174319681)*a^(2) + (323506323309716)/(74691174319681)*a - (170042441423927)/(74691174319681) , (234477662378)/(4393598489393)*a^(15) - (2364192167443)/(4393598489393)*a^(14) + (6450647978264)/(4393598489393)*a^(13) - (7663040963415)/(4393598489393)*a^(12) + (12726433875560)/(4393598489393)*a^(11) - (20734287752271)/(4393598489393)*a^(10) - (48171052729585)/(4393598489393)*a^(9) - (81809695530950)/(4393598489393)*a^(8) - (72929110601819)/(4393598489393)*a^(7) - (70769480820938)/(4393598489393)*a^(6) + (868106791461)/(4393598489393)*a^(5) - (59022726005134)/(4393598489393)*a^(4) - (53581945415453)/(4393598489393)*a^(3) - (4156654715843)/(4393598489393)*a^(2) + (21949839479928)/(4393598489393)*a - (7770192967515)/(4393598489393) , (79100117366602)/(74691174319681)*a^(15) - (304288155157351)/(74691174319681)*a^(14) + (426458437906803)/(74691174319681)*a^(13) - (559797012286616)/(74691174319681)*a^(12) + (1717796802890324)/(74691174319681)*a^(11) + (2816836222984036)/(74691174319681)*a^(10) + (4337367027381877)/(74691174319681)*a^(9) + (4134377735858979)/(74691174319681)*a^(8) + (4152261972617195)/(74691174319681)*a^(7) + (1251765426856211)/(74691174319681)*a^(6) + (4864555076582614)/(74691174319681)*a^(5) + (2598937224081975)/(74691174319681)*a^(4) + (386207023072425)/(74691174319681)*a^(3) + (82103603143999)/(74691174319681)*a^(2) + (906584752587940)/(74691174319681)*a - (518828204713603)/(74691174319681) ], 12132.4396387, [[x^2 - 2, 1], [x^4 - 4*x^2 + 2, 1], [x^8 - 8*x^5 - 4*x^4 - 8*x^3 + 4*x^2 - 1, 1]]]