Normalized defining polynomial
\( x^{16} - 8 x^{15} + 32 x^{14} - 68 x^{13} + 100 x^{12} - 124 x^{11} - 40 x^{10} + 872 x^{9} + 226 x^{8} - 3456 x^{7} + 2592 x^{6} + 2052 x^{5} + 8388 x^{4} + 26028 x^{3} + 17496 x^{2} - 14256 x + 9801 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(103661741408596533461385216=2^{32}\cdot 3^{12}\cdot 13^{6}\cdot 97^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.26$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{4} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2} + \frac{1}{4}$, $\frac{1}{4} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3} + \frac{1}{4} a$, $\frac{1}{12} a^{10} + \frac{1}{12} a^{9} - \frac{1}{12} a^{8} - \frac{1}{6} a^{7} - \frac{1}{6} a^{6} - \frac{1}{3} a^{5} + \frac{1}{6} a^{4} + \frac{1}{6} a^{3} - \frac{5}{12} a^{2} - \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{12} a^{11} + \frac{1}{12} a^{9} - \frac{1}{12} a^{8} - \frac{1}{2} a^{7} - \frac{1}{6} a^{6} - \frac{1}{2} a^{5} - \frac{1}{12} a^{3} + \frac{1}{6} a^{2} + \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{36} a^{12} + \frac{1}{36} a^{11} - \frac{1}{36} a^{10} - \frac{1}{18} a^{9} - \frac{1}{18} a^{8} - \frac{1}{9} a^{7} - \frac{5}{18} a^{6} + \frac{7}{18} a^{5} + \frac{7}{36} a^{4} - \frac{1}{12} a^{3} - \frac{5}{12} a^{2}$, $\frac{1}{396} a^{13} - \frac{1}{198} a^{12} + \frac{1}{198} a^{11} + \frac{13}{396} a^{10} - \frac{23}{396} a^{9} - \frac{17}{198} a^{8} + \frac{26}{99} a^{7} - \frac{34}{99} a^{6} - \frac{119}{396} a^{5} - \frac{2}{11} a^{4} - \frac{31}{66} a^{3} - \frac{37}{132} a^{2} + \frac{9}{44} a$, $\frac{1}{2376} a^{14} - \frac{1}{1188} a^{13} - \frac{31}{2376} a^{12} + \frac{23}{1188} a^{11} - \frac{23}{2376} a^{10} - \frac{29}{297} a^{9} - \frac{259}{2376} a^{8} - \frac{116}{297} a^{7} - \frac{1043}{2376} a^{6} + \frac{65}{396} a^{5} + \frac{235}{792} a^{4} + \frac{1}{44} a^{3} + \frac{97}{264} a^{2} + \frac{1}{8}$, $\frac{1}{506907983503024808070168} a^{15} - \frac{118463743877570819}{2831888175994552000392} a^{14} - \frac{159455903417595850877}{168969327834341602690056} a^{13} - \frac{298429869119137600265}{168969327834341602690056} a^{12} + \frac{10629250180243203947465}{506907983503024808070168} a^{11} - \frac{1471022200429613108335}{56323109278113867563352} a^{10} - \frac{51718788696287814972209}{506907983503024808070168} a^{9} + \frac{55885887084635478817729}{506907983503024808070168} a^{8} - \frac{62570805765067728919865}{168969327834341602690056} a^{7} + \frac{237101072850915816662143}{506907983503024808070168} a^{6} - \frac{26309793468221438369395}{56323109278113867563352} a^{5} + \frac{3957024162185185568957}{56323109278113867563352} a^{4} + \frac{2730252591805942830625}{56323109278113867563352} a^{3} + \frac{28091405093019152606101}{56323109278113867563352} a^{2} - \frac{7325405954417756166963}{18774369759371289187784} a - \frac{328609409133426282019}{1706760887215571744344}$
Class group and class number
$C_{2}\times C_{4}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 232586.859044 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.C_2^3.C_2$ (as 16T707):
| A solvable group of order 256 |
| The 31 conjugacy class representatives for $C_2^4.C_2^3.C_2$ |
| Character table for $C_2^4.C_2^3.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{3}) \), 4.4.7488.1, 8.4.48949235712.1, 8.0.104963309568.1, 8.4.1131271225344.5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
| 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
| $13$ | 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $97$ | $\Q_{97}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{97}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{97}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{97}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.4.2.1 | $x^{4} + 873 x^{2} + 235225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |