Normalized defining polynomial
\( x^{16} - 7 x^{15} + 369 x^{14} + 8198 x^{13} + 118511 x^{12} + 2243990 x^{11} + 59677021 x^{10} + 795562016 x^{9} + 12919660196 x^{8} + 184403499414 x^{7} + 2497035252601 x^{6} + 28925010527445 x^{5} + 288007893045025 x^{4} + 1891810596789859 x^{3} + 14048409623804496 x^{2} + 65945974579414745 x + 157304641041896641 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(103591320678630890586725126366901805607295040854289=37^{14}\cdot 101^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1336.47$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $37, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} + \frac{1}{4} a^{7} + \frac{1}{4} a^{6} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{4} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{11} + \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{99938607481505541516964012171819662783835101700557435251826838367755195955943568651538362814453602929040384342884284} a^{15} + \frac{1624882640840837393324345416305737441403865748049328042767140357309918798696433244696274954213107211462570388842073}{49969303740752770758482006085909831391917550850278717625913419183877597977971784325769181407226801464520192171442142} a^{14} + \frac{12276312772845979008270156429891991120592478788605098667405988214328117757782959004128906016341781974825269051237053}{99938607481505541516964012171819662783835101700557435251826838367755195955943568651538362814453602929040384342884284} a^{13} - \frac{3526786678958238141455664506910876850892542657142841264263870987627476695710380778705734424817904891342897902031347}{49969303740752770758482006085909831391917550850278717625913419183877597977971784325769181407226801464520192171442142} a^{12} + \frac{836116784939667021545386965163799495869055095356231706496060028750153436061768799563076647293977426261680550626725}{99938607481505541516964012171819662783835101700557435251826838367755195955943568651538362814453602929040384342884284} a^{11} + \frac{6456115389571948333811525615546284583607950882293288120774922454127965584498959535014763401468660205797887408756005}{49969303740752770758482006085909831391917550850278717625913419183877597977971784325769181407226801464520192171442142} a^{10} - \frac{8431890996600900580038218402105855819855609201506442815641748428280136632501917285566786002921537889947386095676275}{49969303740752770758482006085909831391917550850278717625913419183877597977971784325769181407226801464520192171442142} a^{9} + \frac{17464459760446114453482715697155805511388206769090940347353257755769796288618634754822791061410400343120150623647081}{99938607481505541516964012171819662783835101700557435251826838367755195955943568651538362814453602929040384342884284} a^{8} + \frac{2479598292110276980810799153779551742915918040724966545384981825300149786157951386225603269522768055577616448318665}{24984651870376385379241003042954915695958775425139358812956709591938798988985892162884590703613400732260096085721071} a^{7} + \frac{31050574425882026442832521855347301100840107095544826506028251441058224833366330305208362364677084010628836186918673}{99938607481505541516964012171819662783835101700557435251826838367755195955943568651538362814453602929040384342884284} a^{6} + \frac{1799871604794046536427545270491618374969484541166045500702391065097471325472636014144206702656601370303205357713621}{24984651870376385379241003042954915695958775425139358812956709591938798988985892162884590703613400732260096085721071} a^{5} - \frac{1121902233334430377941973669519261777157649435650484297116606567116010770929020743509468236629518504884542998074011}{49969303740752770758482006085909831391917550850278717625913419183877597977971784325769181407226801464520192171442142} a^{4} - \frac{5411745870001774377885925600081196660458926225911484751241120638766320913452283361053177443687505118628601616113677}{99938607481505541516964012171819662783835101700557435251826838367755195955943568651538362814453602929040384342884284} a^{3} - \frac{5923680777821737771327585568768575685906082375658017916640826211476425308199070646805828123330175986042659685356615}{24984651870376385379241003042954915695958775425139358812956709591938798988985892162884590703613400732260096085721071} a^{2} + \frac{1332048864114260381618600673075102098528981520760462776037475735045166634126800037730973560510705694274049035011153}{99938607481505541516964012171819662783835101700557435251826838367755195955943568651538362814453602929040384342884284} a - \frac{34690947787028647121515073367101965488217333514456251173683501954479287476368178006603681507151947453595438131206131}{99938607481505541516964012171819662783835101700557435251826838367755195955943568651538362814453602929040384342884284}$
Class group and class number
$C_{2}\times C_{5022}\times C_{50220}$, which has order $504409680$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2450440555.59 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$OD_{16}.C_2$ (as 16T40):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $OD_{16}.C_2$ |
| Character table for $OD_{16}.C_2$ |
Intermediate fields
| \(\Q(\sqrt{101}) \), \(\Q(\sqrt{3737}) \), \(\Q(\sqrt{37}) \), 4.4.52187836553.1, 4.4.52187836553.2, \(\Q(\sqrt{37}, \sqrt{101})\), 8.8.2723570284082642921809.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $37$ | 37.8.7.2 | $x^{8} - 148$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 37.8.7.2 | $x^{8} - 148$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $101$ | 101.8.7.1 | $x^{8} - 101$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 101.8.7.1 | $x^{8} - 101$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |