Normalized defining polynomial
\( x^{16} - 4 x^{15} + 8 x^{14} - 8 x^{13} + 8 x^{12} - 10 x^{11} - 6 x^{10} + 71 x^{9} - 137 x^{8} + \cdots + 1 \)
Invariants
| Degree: | $16$ |
| |
| Signature: | $[0, 8]$ |
| |
| Discriminant: |
\(10297981845947265625\)
\(\medspace = 5^{12}\cdot 59^{6}\)
|
| |
| Root discriminant: | \(15.43\) |
| |
| Galois root discriminant: | $5^{3/4}59^{1/2}\approx 25.683458749990002$ | ||
| Ramified primes: |
\(5\), \(59\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2^2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\zeta_{5})\) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{22592480419}a^{15}+\frac{397076423}{22592480419}a^{14}-\frac{2828720454}{22592480419}a^{13}+\frac{5973300131}{22592480419}a^{12}+\frac{5071993066}{22592480419}a^{11}-\frac{7908439260}{22592480419}a^{10}+\frac{2007821899}{22592480419}a^{9}+\frac{1572359281}{22592480419}a^{8}-\frac{5916163190}{22592480419}a^{7}-\frac{3006449652}{22592480419}a^{6}-\frac{5634726313}{22592480419}a^{5}+\frac{4359637712}{22592480419}a^{4}+\frac{60351811}{22592480419}a^{3}+\frac{8237297912}{22592480419}a^{2}+\frac{10052361464}{22592480419}a-\frac{7436319314}{22592480419}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $7$ |
| |
| Torsion generator: |
\( \frac{833636690}{22592480419} a^{15} - \frac{2263968184}{22592480419} a^{14} + \frac{5869917190}{22592480419} a^{13} - \frac{9428642146}{22592480419} a^{12} + \frac{14614390223}{22592480419} a^{11} - \frac{8080348884}{22592480419} a^{10} - \frac{3033658798}{22592480419} a^{9} + \frac{28694129788}{22592480419} a^{8} - \frac{85926926912}{22592480419} a^{7} + \frac{160637929179}{22592480419} a^{6} - \frac{110747899082}{22592480419} a^{5} - \frac{95883854070}{22592480419} a^{4} + \frac{289312474490}{22592480419} a^{3} - \frac{259282473116}{22592480419} a^{2} + \frac{131699487676}{22592480419} a - \frac{6354477578}{22592480419} \)
(order $10$)
|
| |
| Fundamental units: |
$\frac{692491013}{22592480419}a^{15}-\frac{4784019875}{22592480419}a^{14}+\frac{12872790373}{22592480419}a^{13}-\frac{16433476822}{22592480419}a^{12}+\frac{12157163994}{22592480419}a^{11}-\frac{15070007365}{22592480419}a^{10}+\frac{13469049846}{22592480419}a^{9}+\frac{77505936653}{22592480419}a^{8}-\frac{234885762567}{22592480419}a^{7}+\frac{247204501501}{22592480419}a^{6}+\frac{3042493016}{22592480419}a^{5}-\frac{314119942878}{22592480419}a^{4}+\frac{409425167812}{22592480419}a^{3}-\frac{277978933550}{22592480419}a^{2}+\frac{74568429798}{22592480419}a-\frac{6942687213}{22592480419}$, $\frac{2787887269}{22592480419}a^{15}-\frac{12090336318}{22592480419}a^{14}+\frac{21085098036}{22592480419}a^{13}-\frac{15269893005}{22592480419}a^{12}+\frac{10479598467}{22592480419}a^{11}-\frac{30746572517}{22592480419}a^{10}-\frac{22075840711}{22592480419}a^{9}+\frac{231729373827}{22592480419}a^{8}-\frac{374170266473}{22592480419}a^{7}+\frac{115468814822}{22592480419}a^{6}+\frac{337548114010}{22592480419}a^{5}-\frac{492431198285}{22592480419}a^{4}+\frac{320571721632}{22592480419}a^{3}-\frac{139799402971}{22592480419}a^{2}+\frac{57237820557}{22592480419}a-\frac{13166120401}{22592480419}$, $\frac{421741987}{22592480419}a^{15}-\frac{1864030110}{22592480419}a^{14}+\frac{5097766476}{22592480419}a^{13}-\frac{7285608953}{22592480419}a^{12}+\frac{8085838367}{22592480419}a^{11}-\frac{6993169510}{22592480419}a^{10}+\frac{3056664929}{22592480419}a^{9}+\frac{28461868404}{22592480419}a^{8}-\frac{85300854680}{22592480419}a^{7}+\frac{115970663110}{22592480419}a^{6}-\frac{45292452839}{22592480419}a^{5}-\frac{94169236021}{22592480419}a^{4}+\frac{204250143057}{22592480419}a^{3}-\frac{170081301055}{22592480419}a^{2}+\frac{66992436085}{22592480419}a+\frac{3154618565}{22592480419}$, $\frac{943477247}{22592480419}a^{15}-\frac{6533685939}{22592480419}a^{14}+\frac{13653097344}{22592480419}a^{13}-\frac{14562532593}{22592480419}a^{12}+\frac{7889079219}{22592480419}a^{11}-\frac{19592157266}{22592480419}a^{10}+\frac{2155000472}{22592480419}a^{9}+\frac{111733194168}{22592480419}a^{8}-\frac{250651277271}{22592480419}a^{7}+\frac{185537918919}{22592480419}a^{6}+\frac{113935022566}{22592480419}a^{5}-\frac{373672441563}{22592480419}a^{4}+\frac{348021571494}{22592480419}a^{3}-\frac{149801192463}{22592480419}a^{2}+\frac{14823292494}{22592480419}a+\frac{1526127703}{22592480419}$, $\frac{39374705}{22592480419}a^{15}+\frac{2423797969}{22592480419}a^{14}-\frac{8637262830}{22592480419}a^{13}+\frac{14233265822}{22592480419}a^{12}-\frac{10658712261}{22592480419}a^{11}+\frac{11036884566}{22592480419}a^{10}-\frac{19914933525}{22592480419}a^{9}-\frac{30502897869}{22592480419}a^{8}+\frac{157502930915}{22592480419}a^{7}-\frac{248493418360}{22592480419}a^{6}+\frac{85050368538}{22592480419}a^{5}+\frac{201119683630}{22592480419}a^{4}-\frac{371593257626}{22592480419}a^{3}+\frac{273069771624}{22592480419}a^{2}-\frac{103132380704}{22592480419}a+\frac{4711928078}{22592480419}$, $\frac{3663092553}{22592480419}a^{15}-\frac{13786403707}{22592480419}a^{14}+\frac{25483461481}{22592480419}a^{13}-\frac{21281210820}{22592480419}a^{12}+\frac{20220001709}{22592480419}a^{11}-\frac{31464741640}{22592480419}a^{10}-\frac{30330991510}{22592480419}a^{9}+\frac{256185984121}{22592480419}a^{8}-\frac{440900694975}{22592480419}a^{7}+\frac{221005958577}{22592480419}a^{6}+\frac{297877826858}{22592480419}a^{5}-\frac{623670175435}{22592480419}a^{4}+\frac{545232211582}{22592480419}a^{3}-\frac{246782804890}{22592480419}a^{2}+\frac{43136451242}{22592480419}a-\frac{14584454186}{22592480419}$, $\frac{2031921719}{22592480419}a^{15}-\frac{10476979937}{22592480419}a^{14}+\frac{24525622671}{22592480419}a^{13}-\frac{30426721970}{22592480419}a^{12}+\frac{26096976489}{22592480419}a^{11}-\frac{31748284594}{22592480419}a^{10}+\frac{4407469077}{22592480419}a^{9}+\frac{166880568286}{22592480419}a^{8}-\frac{439167794070}{22592480419}a^{7}+\frac{443956607508}{22592480419}a^{6}+\frac{14167176533}{22592480419}a^{5}-\frac{608274924340}{22592480419}a^{4}+\frac{769972799294}{22592480419}a^{3}-\frac{510061534556}{22592480419}a^{2}+\frac{183065535784}{22592480419}a-\frac{24956508853}{22592480419}$
|
| |
| Regulator: | \( 3370.63382124 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 3370.63382124 \cdot 1}{10\cdot\sqrt{10297981845947265625}}\cr\approx \mathstrut & 0.255137596596 \end{aligned}\]
Galois group
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $D_4:C_4$ |
| Character table for $D_4:C_4$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 4.2.1475.1, 4.2.7375.1, 8.2.128361875.1, 8.2.3209046875.2, 8.0.54390625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | deg 32 |
| Degree 16 sibling: | 16.4.35847274805742431640625.2 |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.8.0.1}{8} }^{2}$ | ${\href{/padicField/3.4.0.1}{4} }^{4}$ | R | ${\href{/padicField/7.4.0.1}{4} }^{4}$ | ${\href{/padicField/11.2.0.1}{2} }^{6}{,}\,{\href{/padicField/11.1.0.1}{1} }^{4}$ | ${\href{/padicField/13.8.0.1}{8} }^{2}$ | ${\href{/padicField/17.4.0.1}{4} }^{4}$ | ${\href{/padicField/19.4.0.1}{4} }^{4}$ | ${\href{/padicField/23.8.0.1}{8} }^{2}$ | ${\href{/padicField/29.4.0.1}{4} }^{4}$ | ${\href{/padicField/31.2.0.1}{2} }^{6}{,}\,{\href{/padicField/31.1.0.1}{1} }^{4}$ | ${\href{/padicField/37.8.0.1}{8} }^{2}$ | ${\href{/padicField/41.4.0.1}{4} }^{4}$ | ${\href{/padicField/43.8.0.1}{8} }^{2}$ | ${\href{/padicField/47.8.0.1}{8} }^{2}$ | ${\href{/padicField/53.4.0.1}{4} }^{4}$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(5\)
| 5.2.4.6a1.2 | $x^{8} + 16 x^{7} + 104 x^{6} + 352 x^{5} + 664 x^{4} + 704 x^{3} + 416 x^{2} + 128 x + 21$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $$[\ ]_{4}^{2}$$ |
| 5.2.4.6a1.2 | $x^{8} + 16 x^{7} + 104 x^{6} + 352 x^{5} + 664 x^{4} + 704 x^{3} + 416 x^{2} + 128 x + 21$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $$[\ ]_{4}^{2}$$ | |
|
\(59\)
| 59.2.1.0a1.1 | $x^{2} + 58 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 59.2.1.0a1.1 | $x^{2} + 58 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 59.2.2.2a1.2 | $x^{4} + 116 x^{3} + 3368 x^{2} + 232 x + 63$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 59.2.2.2a1.2 | $x^{4} + 116 x^{3} + 3368 x^{2} + 232 x + 63$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 59.2.2.2a1.2 | $x^{4} + 116 x^{3} + 3368 x^{2} + 232 x + 63$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |