Normalized defining polynomial
\( x^{16} - 4 x^{15} - 6 x^{14} + 53 x^{13} + 78 x^{12} - 388 x^{11} - 498 x^{10} + 1622 x^{9} + 2426 x^{8} - 4767 x^{7} - 7911 x^{6} + 6008 x^{5} + 11890 x^{4} - 6636 x^{3} - 3020 x^{2} + 23352 x + 19321 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(102711726879931884765625=5^{12}\cdot 29^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.43$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{11} a^{13} - \frac{3}{11} a^{12} - \frac{4}{11} a^{11} - \frac{1}{11} a^{10} - \frac{3}{11} a^{9} - \frac{3}{11} a^{8} + \frac{3}{11} a^{7} - \frac{1}{11} a^{6} + \frac{4}{11} a^{5} - \frac{2}{11} a^{3} + \frac{3}{11} a^{2} + \frac{3}{11} a - \frac{3}{11}$, $\frac{1}{11} a^{14} - \frac{2}{11} a^{12} - \frac{2}{11} a^{11} + \frac{5}{11} a^{10} - \frac{1}{11} a^{9} + \frac{5}{11} a^{8} - \frac{3}{11} a^{7} + \frac{1}{11} a^{6} + \frac{1}{11} a^{5} - \frac{2}{11} a^{4} - \frac{3}{11} a^{3} + \frac{1}{11} a^{2} - \frac{5}{11} a + \frac{2}{11}$, $\frac{1}{75415381048716485148527598509} a^{15} + \frac{297854559770116930450328101}{75415381048716485148527598509} a^{14} - \frac{3166771074276493160890279278}{75415381048716485148527598509} a^{13} + \frac{6438216592316277523536826778}{75415381048716485148527598509} a^{12} + \frac{15073930875851525940448864014}{75415381048716485148527598509} a^{11} + \frac{20038890342192383306609151489}{75415381048716485148527598509} a^{10} - \frac{21369557694256471520825833303}{75415381048716485148527598509} a^{9} - \frac{35490183821977104770000314987}{75415381048716485148527598509} a^{8} - \frac{31350997173067169886069506297}{75415381048716485148527598509} a^{7} - \frac{23468184420458031797543050195}{75415381048716485148527598509} a^{6} - \frac{21168152417215760918213286219}{75415381048716485148527598509} a^{5} - \frac{36381195492199495720944676704}{75415381048716485148527598509} a^{4} + \frac{3012704765659324506480493237}{75415381048716485148527598509} a^{3} - \frac{4280652097086112489340334976}{75415381048716485148527598509} a^{2} - \frac{30823838027190193692738996293}{75415381048716485148527598509} a + \frac{142598304025579942858155132}{542556698192204929126097831}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{10377150903472986182246187}{75415381048716485148527598509} a^{15} - \frac{49557449689653310769574142}{75415381048716485148527598509} a^{14} - \frac{5614250530788930548703825}{75415381048716485148527598509} a^{13} + \frac{475924305803915935111489191}{75415381048716485148527598509} a^{12} + \frac{445927076449646889256881386}{75415381048716485148527598509} a^{11} - \frac{3810197425717723932442788950}{75415381048716485148527598509} a^{10} - \frac{1029033852011724607484056173}{75415381048716485148527598509} a^{9} + \frac{14065080381515717233366852833}{75415381048716485148527598509} a^{8} + \frac{9116028669549235926501187831}{75415381048716485148527598509} a^{7} - \frac{45622754061557073512886241756}{75415381048716485148527598509} a^{6} - \frac{16698164700205457635702477741}{75415381048716485148527598509} a^{5} + \frac{45678153914191243370318110264}{75415381048716485148527598509} a^{4} + \frac{12627897768269906925647917522}{75415381048716485148527598509} a^{3} - \frac{59619656982785363859278467515}{75415381048716485148527598509} a^{2} + \frac{65956213202332044314217595492}{75415381048716485148527598509} a + \frac{455871323310180544658229269}{542556698192204929126097831} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 86779.6039367 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times C_4).D_4$ (as 16T121):
| A solvable group of order 64 |
| The 28 conjugacy class representatives for $(C_2\times C_4).D_4$ |
| Character table for $(C_2\times C_4).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.725.1, \(\Q(\zeta_{5})\), 4.0.3625.1, 8.4.320486703125.1, 8.4.12819468125.1, 8.0.13140625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $29$ | 29.4.2.2 | $x^{4} - 29 x^{2} + 2523$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 29.4.2.2 | $x^{4} - 29 x^{2} + 2523$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 29.8.6.2 | $x^{8} + 145 x^{4} + 7569$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |