Normalized defining polynomial
\( x^{16} - 7 x^{15} + 23 x^{14} - 50 x^{13} + 115 x^{12} - 263 x^{11} + 384 x^{10} - 245 x^{9} + 289 x^{8} - 890 x^{7} + 1101 x^{6} - 1581 x^{5} + 3875 x^{4} - 7140 x^{3} + 8532 x^{2} - 5184 x + 1296 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(102711726879931884765625=5^{12}\cdot 29^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.43$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{8} - \frac{1}{4} a^{6} - \frac{1}{4} a^{4} + \frac{1}{8} a^{3} + \frac{1}{8} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{8} a^{4} + \frac{1}{4} a^{3} - \frac{1}{8} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{8} - \frac{1}{4} a^{7} - \frac{1}{8} a^{5} - \frac{1}{2} a^{3} + \frac{1}{8} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{8} + \frac{1}{8} a^{6} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} + \frac{1}{8} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{48} a^{13} - \frac{1}{48} a^{12} + \frac{1}{24} a^{11} + \frac{1}{48} a^{10} + \frac{1}{48} a^{9} + \frac{1}{12} a^{8} - \frac{3}{16} a^{7} + \frac{1}{48} a^{6} - \frac{1}{24} a^{5} + \frac{7}{48} a^{4} - \frac{3}{16} a^{3} + \frac{1}{4} a^{2} - \frac{1}{3} a - \frac{1}{2}$, $\frac{1}{8352} a^{14} - \frac{61}{8352} a^{13} - \frac{11}{4176} a^{12} - \frac{329}{8352} a^{11} - \frac{11}{8352} a^{10} - \frac{235}{4176} a^{9} - \frac{223}{2784} a^{8} - \frac{983}{8352} a^{7} + \frac{401}{4176} a^{6} - \frac{2015}{8352} a^{5} - \frac{83}{2784} a^{4} - \frac{541}{1392} a^{3} - \frac{919}{2088} a^{2} - \frac{13}{174} a + \frac{12}{29}$, $\frac{1}{36403577904805056} a^{15} + \frac{166800029227}{18201788952402528} a^{14} - \frac{250579536593839}{36403577904805056} a^{13} - \frac{49042979001697}{1255295789820864} a^{12} + \frac{260369428657667}{18201788952402528} a^{11} + \frac{299383558289731}{36403577904805056} a^{10} + \frac{6817567731319}{237931881730752} a^{9} + \frac{2243812846554197}{18201788952402528} a^{8} + \frac{6412603553593591}{36403577904805056} a^{7} - \frac{831574453427015}{36403577904805056} a^{6} - \frac{1307832028690007}{6067262984134176} a^{5} - \frac{2107560296917577}{12134525968268352} a^{4} - \frac{3426161510087893}{9100894476201264} a^{3} - \frac{1228362009021359}{3033631492067088} a^{2} - \frac{5559138057529}{252802624338924} a + \frac{5795756044763}{84267541446308}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 119871.996246 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2.D_4$ (as 16T33):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^2.D_4$ |
| Character table for $C_2^2.D_4$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{145}) \), \(\Q(\sqrt{29}) \), 4.0.3625.1 x2, 4.0.105125.1 x2, \(\Q(\sqrt{5}, \sqrt{29})\), 8.4.64097340625.1 x2, 8.0.11051265625.4, 8.0.11051265625.3 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $29$ | 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.4.3.1 | $x^{4} - 29$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 29.4.3.1 | $x^{4} - 29$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |