Normalized defining polynomial
\( x^{16} - 6 x^{15} + 14 x^{14} - 21 x^{13} + 93 x^{12} - 127 x^{11} - 191 x^{10} + 737 x^{9} - 1034 x^{8} + 1052 x^{7} + 104 x^{6} - 4075 x^{5} + 9045 x^{4} - 10079 x^{3} + 6953 x^{2} - 2841 x + 631 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(102711726879931884765625=5^{12}\cdot 29^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.43$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{8} + \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{10} - \frac{1}{8} a^{9} + \frac{1}{4} a^{8} + \frac{1}{4} a^{7} + \frac{3}{8} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} + \frac{3}{8} a^{2} - \frac{1}{4} a + \frac{1}{8}$, $\frac{1}{16} a^{12} - \frac{1}{8} a^{10} + \frac{1}{16} a^{9} - \frac{1}{4} a^{8} + \frac{5}{16} a^{7} - \frac{1}{16} a^{6} - \frac{1}{4} a^{5} + \frac{1}{4} a^{4} - \frac{1}{16} a^{3} + \frac{1}{16} a^{2} - \frac{1}{16} a + \frac{1}{16}$, $\frac{1}{32} a^{13} - \frac{1}{32} a^{12} - \frac{1}{16} a^{11} + \frac{3}{32} a^{10} - \frac{5}{32} a^{9} - \frac{7}{32} a^{8} - \frac{3}{16} a^{7} + \frac{13}{32} a^{6} - \frac{1}{4} a^{5} + \frac{11}{32} a^{4} - \frac{7}{16} a^{3} - \frac{1}{16} a^{2} + \frac{1}{16} a + \frac{15}{32}$, $\frac{1}{64} a^{14} + \frac{1}{64} a^{12} + \frac{1}{64} a^{11} + \frac{3}{32} a^{10} - \frac{1}{8} a^{9} - \frac{13}{64} a^{8} - \frac{21}{64} a^{7} - \frac{15}{64} a^{6} - \frac{13}{64} a^{5} - \frac{19}{64} a^{4} + \frac{3}{16} a^{3} + \frac{1}{16} a^{2} - \frac{3}{64} a + \frac{3}{64}$, $\frac{1}{13561838415752825469568} a^{15} - \frac{40928785877108342693}{13561838415752825469568} a^{14} - \frac{172440448027129901719}{13561838415752825469568} a^{13} - \frac{54170451606003401157}{3390459603938206367392} a^{12} + \frac{316282725509902563745}{13561838415752825469568} a^{11} + \frac{614337541510282197433}{6780919207876412734784} a^{10} + \frac{864336309326140208123}{13561838415752825469568} a^{9} - \frac{857510680596452893883}{3390459603938206367392} a^{8} + \frac{148759735312548819313}{6780919207876412734784} a^{7} - \frac{2439369284270115295361}{6780919207876412734784} a^{6} - \frac{2308045082465437394985}{6780919207876412734784} a^{5} - \frac{2743112614631812006493}{13561838415752825469568} a^{4} - \frac{16881609612856354661}{38527950044752345084} a^{3} - \frac{5376292636698596518271}{13561838415752825469568} a^{2} - \frac{1370720336014105616219}{6780919207876412734784} a - \frac{4494215452501685030127}{13561838415752825469568}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 14143.2557982 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times C_4).D_4$ (as 16T121):
| A solvable group of order 64 |
| The 28 conjugacy class representatives for $(C_2\times C_4).D_4$ |
| Character table for $(C_2\times C_4).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.725.1, 4.0.105125.2, 4.0.3625.1, 8.4.381078125.1, 8.4.12819468125.1, 8.0.11051265625.5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $29$ | 29.4.3.3 | $x^{4} + 58$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 29.4.3.3 | $x^{4} + 58$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 29.8.4.1 | $x^{8} + 31958 x^{4} - 24389 x^{2} + 255328441$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |