Normalized defining polynomial
\( x^{16} - 3 x^{15} - 7 x^{14} + 11 x^{13} + 113 x^{12} - 226 x^{11} - 143 x^{10} - 199 x^{9} + 3108 x^{8} - 4526 x^{7} + 1698 x^{6} - 7747 x^{5} + 27621 x^{4} - 35200 x^{3} + 18760 x^{2} - 3400 x + 400 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(102711726879931884765625=5^{12}\cdot 29^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.43$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{8} - \frac{1}{3}$, $\frac{1}{6} a^{9} - \frac{1}{6} a^{8} - \frac{1}{6} a^{7} - \frac{1}{3} a^{6} - \frac{1}{6} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{6} a + \frac{1}{3}$, $\frac{1}{30} a^{10} + \frac{2}{15} a^{8} - \frac{1}{6} a^{7} + \frac{11}{30} a^{6} - \frac{1}{6} a^{5} + \frac{7}{15} a^{4} + \frac{1}{3} a^{3} + \frac{1}{30} a^{2} - \frac{1}{6} a + \frac{1}{3}$, $\frac{1}{30} a^{11} - \frac{1}{30} a^{9} - \frac{2}{15} a^{7} - \frac{1}{6} a^{6} - \frac{1}{30} a^{5} + \frac{1}{3} a^{4} + \frac{1}{30} a^{3} - \frac{1}{6} a^{2} - \frac{1}{2} a + \frac{1}{3}$, $\frac{1}{90} a^{12} - \frac{1}{90} a^{11} + \frac{1}{90} a^{9} + \frac{2}{45} a^{7} + \frac{7}{18} a^{6} + \frac{8}{45} a^{5} - \frac{7}{18} a^{4} + \frac{7}{45} a^{3} + \frac{11}{90} a^{2} - \frac{1}{9}$, $\frac{1}{90} a^{13} - \frac{1}{90} a^{11} + \frac{1}{90} a^{10} + \frac{1}{90} a^{9} + \frac{2}{45} a^{8} + \frac{1}{10} a^{7} - \frac{1}{10} a^{6} + \frac{41}{90} a^{5} + \frac{1}{10} a^{4} - \frac{1}{18} a^{3} + \frac{41}{90} a^{2} - \frac{4}{9} a + \frac{2}{9}$, $\frac{1}{180} a^{14} - \frac{1}{180} a^{13} - \frac{1}{180} a^{12} - \frac{1}{180} a^{11} - \frac{1}{60} a^{10} + \frac{1}{30} a^{9} - \frac{7}{180} a^{8} + \frac{1}{20} a^{7} - \frac{29}{90} a^{6} - \frac{7}{90} a^{5} - \frac{43}{90} a^{4} - \frac{77}{180} a^{3} - \frac{23}{60} a^{2} + \frac{1}{6} a - \frac{4}{9}$, $\frac{1}{167839960433400} a^{15} + \frac{263822551699}{167839960433400} a^{14} + \frac{52656420391}{167839960433400} a^{13} + \frac{261352579991}{55946653477800} a^{12} + \frac{445989588953}{55946653477800} a^{11} - \frac{779440709}{975813723450} a^{10} - \frac{256033405871}{18648884492600} a^{9} - \frac{20081367210637}{167839960433400} a^{8} - \frac{243085918631}{1951627446900} a^{7} - \frac{9011507712599}{83919980216700} a^{6} + \frac{24708807781351}{83919980216700} a^{5} - \frac{25728238908001}{55946653477800} a^{4} + \frac{745409240827}{3729776898520} a^{3} - \frac{3555183672493}{16783996043340} a^{2} + \frac{87071196877}{279733267389} a + \frac{76395471272}{839199802167}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 73371.5821514 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2.D_4$ (as 16T33):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^2.D_4$ |
| Character table for $C_2^2.D_4$ |
Intermediate fields
| \(\Q(\sqrt{145}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{29}) \), 4.0.105125.1 x2, 4.0.3625.1 x2, \(\Q(\sqrt{5}, \sqrt{29})\), 8.4.64097340625.2 x2, 8.0.11051265625.4, 8.0.11051265625.2 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $29$ | 29.4.3.2 | $x^{4} - 116$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 29.4.3.2 | $x^{4} - 116$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |