Normalized defining polynomial
\( x^{16} - 4 x^{15} - 2 x^{14} + 16 x^{13} + 77 x^{12} - 152 x^{11} - 34 x^{10} - 444 x^{9} - 914 x^{8} + 2364 x^{7} + 9326 x^{6} + 8376 x^{5} + 56089 x^{4} - 6224 x^{3} + 48294 x^{2} - 540 x + 29207 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(10249598790959829536343064576=2^{44}\cdot 17^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $56.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(272=2^{4}\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{272}(123,·)$, $\chi_{272}(1,·)$, $\chi_{272}(67,·)$, $\chi_{272}(225,·)$, $\chi_{272}(137,·)$, $\chi_{272}(203,·)$, $\chi_{272}(81,·)$, $\chi_{272}(259,·)$, $\chi_{272}(217,·)$, $\chi_{272}(89,·)$, $\chi_{272}(33,·)$, $\chi_{272}(35,·)$, $\chi_{272}(169,·)$, $\chi_{272}(171,·)$, $\chi_{272}(115,·)$, $\chi_{272}(251,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{40} a^{12} - \frac{1}{5} a^{11} - \frac{1}{10} a^{10} - \frac{1}{2} a^{9} + \frac{3}{20} a^{8} - \frac{1}{5} a^{7} - \frac{1}{4} a^{6} - \frac{2}{5} a^{5} + \frac{1}{5} a^{4} - \frac{3}{10} a^{3} - \frac{1}{10} a^{2} - \frac{1}{5} a - \frac{7}{40}$, $\frac{1}{40} a^{13} + \frac{3}{10} a^{11} - \frac{3}{10} a^{10} + \frac{3}{20} a^{9} + \frac{3}{20} a^{7} - \frac{2}{5} a^{6} + \frac{3}{10} a^{4} - \frac{1}{2} a^{3} + \frac{9}{40} a - \frac{2}{5}$, $\frac{1}{988338057360} a^{14} - \frac{1433696701}{494169028680} a^{13} + \frac{4697409241}{988338057360} a^{12} + \frac{116096956573}{247084514340} a^{11} - \frac{49712979803}{494169028680} a^{10} + \frac{14453395127}{41180752390} a^{9} + \frac{13661537039}{49416902868} a^{8} - \frac{13880030621}{49416902868} a^{7} - \frac{79814521523}{164723009560} a^{6} + \frac{98961500627}{247084514340} a^{5} + \frac{32627990349}{82361504780} a^{4} + \frac{44551832993}{247084514340} a^{3} - \frac{170748044347}{988338057360} a^{2} - \frac{217320131293}{494169028680} a - \frac{67165051211}{988338057360}$, $\frac{1}{235406989268057120945520} a^{15} + \frac{3555621561}{39234498211342853490920} a^{14} + \frac{421754815710028346649}{78468996422685706981840} a^{13} + \frac{411004088136452859827}{39234498211342853490920} a^{12} + \frac{29894122580302476144089}{117703494634028560472760} a^{11} + \frac{8482852502342672317781}{29425873658507140118190} a^{10} + \frac{4023535731993780100951}{14712936829253570059095} a^{9} + \frac{4353997260370967953987}{14712936829253570059095} a^{8} + \frac{11419469061876802606229}{117703494634028560472760} a^{7} + \frac{6444825799722900105962}{14712936829253570059095} a^{6} - \frac{2699175063049430587453}{11770349463402856047276} a^{5} - \frac{15616121487760536888181}{58851747317014280236380} a^{4} + \frac{4556188424063757592523}{15693799284537141396368} a^{3} - \frac{1822155930647375073853}{23540698926805712094552} a^{2} + \frac{9003845640551240826381}{78468996422685706981840} a + \frac{58755173103144823153783}{117703494634028560472760}$
Class group and class number
$C_{4}\times C_{52}$, which has order $208$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 103646.40189541418 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4^2$ |
| Character table for $C_4^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.22.7 | $x^{8} + 2 x^{4} + 16 x + 4$ | $4$ | $2$ | $22$ | $C_4\times C_2$ | $[3, 4]^{2}$ |
| 2.8.22.7 | $x^{8} + 2 x^{4} + 16 x + 4$ | $4$ | $2$ | $22$ | $C_4\times C_2$ | $[3, 4]^{2}$ | |
| $17$ | 17.4.3.1 | $x^{4} - 17$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 17.4.3.1 | $x^{4} - 17$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 17.4.3.1 | $x^{4} - 17$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 17.4.3.1 | $x^{4} - 17$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |