Normalized defining polynomial
\( x^{16} - 4 x^{15} + 4 x^{14} + 6 x^{13} - 9 x^{12} - 52 x^{11} + 226 x^{10} - 482 x^{9} + 697 x^{8} - 738 x^{7} + 596 x^{6} - 378 x^{5} + 191 x^{4} - 76 x^{3} + 24 x^{2} - 6 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(102400000000000000=2^{24}\cdot 5^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $11.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{11} a^{14} + \frac{2}{11} a^{13} - \frac{5}{11} a^{12} - \frac{3}{11} a^{10} - \frac{4}{11} a^{9} + \frac{1}{11} a^{8} + \frac{4}{11} a^{7} - \frac{4}{11} a^{6} + \frac{1}{11} a^{5} + \frac{4}{11} a^{4} - \frac{1}{11} a^{3} + \frac{2}{11} a^{2} + \frac{1}{11} a - \frac{1}{11}$, $\frac{1}{4374469} a^{15} - \frac{99708}{4374469} a^{14} + \frac{1299831}{4374469} a^{13} + \frac{1656971}{4374469} a^{12} + \frac{1150377}{4374469} a^{11} + \frac{1388720}{4374469} a^{10} - \frac{1041224}{4374469} a^{9} - \frac{303415}{4374469} a^{8} + \frac{1043685}{4374469} a^{7} - \frac{99085}{4374469} a^{6} + \frac{2018113}{4374469} a^{5} + \frac{1693095}{4374469} a^{4} + \frac{2017342}{4374469} a^{3} - \frac{196696}{397679} a^{2} + \frac{207508}{4374469} a + \frac{667695}{4374469}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{6863158}{4374469} a^{15} - \frac{20730416}{4374469} a^{14} + \frac{6586650}{4374469} a^{13} + \frac{49348837}{4374469} a^{12} - \frac{15017270}{4374469} a^{11} - \frac{373017604}{4374469} a^{10} + \frac{1187481022}{4374469} a^{9} - \frac{2122258780}{4374469} a^{8} + \frac{2605590630}{4374469} a^{7} - \frac{2279644310}{4374469} a^{6} + \frac{1489815532}{4374469} a^{5} - \frac{713301184}{4374469} a^{4} + \frac{245897576}{4374469} a^{3} - \frac{51073010}{4374469} a^{2} + \frac{9653340}{4374469} a + \frac{2191268}{4374469} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 309.712108606 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_4$ (as 16T41):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^3.C_4$ |
| Character table for $C_2^3.C_4$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 4.2.400.1, 4.2.2000.1, 8.0.20000000.1 x2, 8.0.4000000.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||