Normalized defining polynomial
\( x^{16} - 4 x^{15} + 14 x^{14} + 11 x^{13} - 44 x^{12} + 108 x^{11} + 281 x^{10} - 317 x^{9} - 1098 x^{8} - 623 x^{7} + 1121 x^{6} + 2427 x^{5} + 946 x^{4} - 2006 x^{3} - 1846 x^{2} + 409 x + 751 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(10236206731207275390625=5^{14}\cdot 109^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.75$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 109$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2882} a^{14} + \frac{233}{1441} a^{13} - \frac{3}{262} a^{12} - \frac{107}{2882} a^{11} - \frac{185}{2882} a^{10} - \frac{480}{1441} a^{9} - \frac{28}{131} a^{8} - \frac{590}{1441} a^{7} - \frac{44}{131} a^{6} + \frac{725}{2882} a^{5} - \frac{175}{1441} a^{4} + \frac{1323}{2882} a^{3} + \frac{483}{1441} a^{2} + \frac{394}{1441} a - \frac{1049}{2882}$, $\frac{1}{2698644120914344922} a^{15} + \frac{104292533972590}{1349322060457172461} a^{14} - \frac{295199125734802775}{1349322060457172461} a^{13} + \frac{245053041086819881}{2698644120914344922} a^{12} - \frac{460033478636852891}{2698644120914344922} a^{11} + \frac{100127039247354672}{1349322060457172461} a^{10} - \frac{440452433990594561}{2698644120914344922} a^{9} + \frac{526593218433339109}{2698644120914344922} a^{8} + \frac{1190353997909553337}{2698644120914344922} a^{7} + \frac{368410721021156753}{1349322060457172461} a^{6} - \frac{128887977571908086}{1349322060457172461} a^{5} - \frac{183436820184752095}{1349322060457172461} a^{4} - \frac{424856035771553460}{1349322060457172461} a^{3} - \frac{1249353821749037501}{2698644120914344922} a^{2} - \frac{51488302697661286}{122665641859742951} a + \frac{221100369113563205}{1349322060457172461}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{3495507769165}{122665641859742951} a^{15} + \frac{378068766412703}{245331283719485902} a^{14} - \frac{940184871671385}{122665641859742951} a^{13} + \frac{3407042162731091}{122665641859742951} a^{12} - \frac{2415685987819938}{122665641859742951} a^{11} - \frac{5878486676530361}{245331283719485902} a^{10} + \frac{25598424409807715}{245331283719485902} a^{9} + \frac{45228881768429519}{245331283719485902} a^{8} - \frac{127503576633713519}{245331283719485902} a^{7} - \frac{193589205154259659}{122665641859742951} a^{6} - \frac{270475852771968033}{245331283719485902} a^{5} + \frac{209064444213541234}{122665641859742951} a^{4} + \frac{935540082424907723}{245331283719485902} a^{3} + \frac{675324379191014099}{245331283719485902} a^{2} - \frac{144338665822787626}{122665641859742951} a - \frac{254460024016398349}{122665641859742951} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 118928.142177 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\wr C_2$ (as 16T28):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_4\wr C_2$ |
| Character table for $C_4\wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 4.4.13625.1, 4.0.2725.1, 8.0.185640625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $109$ | 109.4.0.1 | $x^{4} - x + 30$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 109.4.2.2 | $x^{4} - 109 x^{2} + 71286$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 109.8.4.1 | $x^{8} + 712860 x^{4} - 1295029 x^{2} + 127042344900$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |