Normalized defining polynomial
\( x^{16} - 4 x^{15} + 19 x^{14} - 54 x^{13} + 166 x^{12} - 302 x^{11} + 781 x^{10} - 662 x^{9} + 2867 x^{8} - 238 x^{7} + 9681 x^{6} + 2282 x^{5} + 18806 x^{4} + 7394 x^{3} + 13879 x^{2} + 5684 x + 661 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(10236206731207275390625=5^{14}\cdot 109^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.75$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 109$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{7} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{66544037113828133729007940558} a^{15} + \frac{7223616124192309790222385309}{66544037113828133729007940558} a^{14} + \frac{7634150759234913344148639891}{33272018556914066864503970279} a^{13} + \frac{3616514138555839476804106549}{33272018556914066864503970279} a^{12} + \frac{2978527858604198744165829611}{66544037113828133729007940558} a^{11} + \frac{196307942644260862332639359}{1073290921190776350467870009} a^{10} + \frac{7664087339736204924083528989}{66544037113828133729007940558} a^{9} - \frac{7851705095071218586955449255}{33272018556914066864503970279} a^{8} - \frac{1607453029913989270647539402}{33272018556914066864503970279} a^{7} + \frac{12573843127163880283129981385}{66544037113828133729007940558} a^{6} - \frac{14175027056049964459490235551}{33272018556914066864503970279} a^{5} - \frac{26452691904579177743735663213}{66544037113828133729007940558} a^{4} - \frac{1880245776563661198448026451}{33272018556914066864503970279} a^{3} + \frac{7412316913889662274313583577}{33272018556914066864503970279} a^{2} - \frac{13369071391588548274116420535}{66544037113828133729007940558} a - \frac{5561133333510274374338577613}{66544037113828133729007940558}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{12518866406153539791891}{11859568189953329839423978} a^{15} - \frac{50877957715020083089455}{11859568189953329839423978} a^{14} + \frac{247347651793887032073665}{11859568189953329839423978} a^{13} - \frac{362643227361584043583335}{5929784094976664919711989} a^{12} + \frac{2252719454899331015111261}{11859568189953329839423978} a^{11} - \frac{4306928000338632936533431}{11859568189953329839423978} a^{10} + \frac{11095711548747116779747061}{11859568189953329839423978} a^{9} - \frac{5490558481394944439730880}{5929784094976664919711989} a^{8} + \frac{40406519838886017038804531}{11859568189953329839423978} a^{7} - \frac{9829716734866469002211869}{11859568189953329839423978} a^{6} + \frac{65914312000537933541394901}{5929784094976664919711989} a^{5} + \frac{3327735973799626080300975}{5929784094976664919711989} a^{4} + \frac{129202692383050909767756151}{5929784094976664919711989} a^{3} + \frac{19911717006769423244931882}{5929784094976664919711989} a^{2} + \frac{88907668989153504550523361}{5929784094976664919711989} a + \frac{35041555898854613105094455}{11859568189953329839423978} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 93034.1814672 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times C_4).D_4$ (as 16T121):
| A solvable group of order 64 |
| The 28 conjugacy class representatives for $(C_2\times C_4).D_4$ |
| Character table for $(C_2\times C_4).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.13625.1, \(\Q(\zeta_{5})\), 4.0.2725.1, 8.8.101174140625.1, 8.0.101174140625.1, 8.0.185640625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $109$ | 109.4.0.1 | $x^{4} - x + 30$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 109.4.0.1 | $x^{4} - x + 30$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 109.8.6.2 | $x^{8} + 1199 x^{4} + 427716$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |