Normalized defining polynomial
\( x^{16} - 6 x^{15} + 27 x^{14} - 76 x^{13} + 160 x^{12} - 214 x^{11} + 192 x^{10} - 148 x^{9} + 329 x^{8} - 592 x^{7} + 656 x^{6} - 440 x^{5} + 288 x^{4} - 176 x^{3} + 104 x^{2} - 32 x + 16 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1017606619113208152064=2^{24}\cdot 41^{6}\cdot 113^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 41, 113$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{11} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{376} a^{14} - \frac{3}{94} a^{13} + \frac{45}{376} a^{12} - \frac{37}{188} a^{11} + \frac{27}{188} a^{10} + \frac{37}{188} a^{9} - \frac{20}{47} a^{8} - \frac{22}{47} a^{7} - \frac{127}{376} a^{6} - \frac{51}{188} a^{5} - \frac{73}{188} a^{4} - \frac{9}{47} a^{3} - \frac{11}{94} a^{2} - \frac{20}{47} a + \frac{7}{47}$, $\frac{1}{35883456758296} a^{15} - \frac{24582952983}{35883456758296} a^{14} - \frac{352217717067}{35883456758296} a^{13} + \frac{2985176336701}{35883456758296} a^{12} - \frac{984034069751}{8970864189574} a^{11} - \frac{924188836301}{17941728379148} a^{10} + \frac{3057695120673}{17941728379148} a^{9} - \frac{3458712150949}{8970864189574} a^{8} + \frac{12411330733885}{35883456758296} a^{7} + \frac{2068570696127}{35883456758296} a^{6} - \frac{1076399485423}{8970864189574} a^{5} - \frac{887184080453}{8970864189574} a^{4} - \frac{518524694623}{1281552027082} a^{3} + \frac{1133778893988}{4485432094787} a^{2} + \frac{1660301471088}{4485432094787} a - \frac{1350819342291}{4485432094787}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2873.19936942 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 65 conjugacy class representatives for t16n876 are not computed |
| Character table for t16n876 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.4.2624.1, 8.8.282300416.1, 8.0.778047488.1, 8.0.31899947008.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.12.1 | $x^{8} + 6 x^{6} + 8 x^{5} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ |
| 2.8.12.1 | $x^{8} + 6 x^{6} + 8 x^{5} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
| $41$ | 41.4.3.4 | $x^{4} + 8856$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 41.4.0.1 | $x^{4} - x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 41.4.0.1 | $x^{4} - x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 41.4.3.4 | $x^{4} + 8856$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $113$ | $\Q_{113}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{113}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{113}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{113}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 113.2.1.1 | $x^{2} - 113$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 113.2.1.1 | $x^{2} - 113$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 113.2.0.1 | $x^{2} - x + 10$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 113.2.0.1 | $x^{2} - x + 10$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 113.2.0.1 | $x^{2} - x + 10$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 113.2.0.1 | $x^{2} - x + 10$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |