Properties

Label 16.0.10152996499...3616.5
Degree $16$
Signature $[0, 8]$
Discriminant $2^{28}\cdot 3^{8}\cdot 7^{8}$
Root discriminant $15.41$
Ramified primes $2, 3, 7$
Class number $1$
Class group Trivial
Galois group $Q_8 : C_2^2$ (as 16T23)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![16, 0, 0, 0, -72, 0, 0, 0, 89, 0, 0, 0, 3, 0, 0, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 + 3*x^12 + 89*x^8 - 72*x^4 + 16)
 
gp: K = bnfinit(x^16 + 3*x^12 + 89*x^8 - 72*x^4 + 16, 1)
 

Normalized defining polynomial

\( x^{16} + 3 x^{12} + 89 x^{8} - 72 x^{4} + 16 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(10152996499793903616=2^{28}\cdot 3^{8}\cdot 7^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $15.41$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 7$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{4} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4} a^{11} - \frac{1}{2} a^{9} - \frac{1}{4} a^{7} - \frac{1}{2} a^{5} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{2080} a^{12} - \frac{433}{2080} a^{8} - \frac{31}{160} a^{4} + \frac{229}{520}$, $\frac{1}{2080} a^{13} - \frac{433}{2080} a^{9} - \frac{31}{160} a^{5} + \frac{229}{520} a$, $\frac{1}{8320} a^{14} - \frac{1}{4160} a^{13} - \frac{1}{4160} a^{12} - \frac{433}{8320} a^{10} + \frac{433}{4160} a^{9} + \frac{433}{4160} a^{8} - \frac{191}{640} a^{6} - \frac{129}{320} a^{5} - \frac{129}{320} a^{4} + \frac{229}{2080} a^{2} - \frac{229}{1040} a - \frac{229}{1040}$, $\frac{1}{8320} a^{15} - \frac{1}{4160} a^{13} - \frac{433}{8320} a^{11} + \frac{433}{4160} a^{9} - \frac{191}{640} a^{7} - \frac{129}{320} a^{5} + \frac{229}{2080} a^{3} - \frac{229}{1040} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( \frac{329}{4160} a^{14} + \frac{1063}{4160} a^{10} + \frac{2281}{320} a^{6} - \frac{4219}{1040} a^{2} \) (order $12$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 6069.99483452 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$Q_8:C_2^2$ (as 16T23):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 32
The 17 conjugacy class representatives for $Q_8 : C_2^2$
Character table for $Q_8 : C_2^2$

Intermediate fields

\(\Q(\sqrt{7}) \), \(\Q(\sqrt{21}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{-21}) \), \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{3}, \sqrt{-7})\), \(\Q(\sqrt{3}, \sqrt{7})\), \(\Q(\zeta_{12})\), \(\Q(\sqrt{-3}, \sqrt{7})\), \(\Q(i, \sqrt{21})\), \(\Q(i, \sqrt{7})\), \(\Q(\sqrt{-3}, \sqrt{-7})\), 8.0.49787136.1, 8.0.354041856.1 x2, 8.0.199148544.1 x2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed
Degree 8 siblings: data not computed
Degree 16 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ R ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.12.13$x^{8} + 12 x^{4} + 16$$4$$2$$12$$D_4$$[2, 2]^{2}$
2.8.16.4$x^{8} + 6 x^{6} + 6 x^{4} + 8 x^{3} + 4 x^{2} + 8 x + 20$$4$$2$$16$$D_4$$[2, 3]^{2}$
$3$3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$7$7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$