Normalized defining polynomial
\( x^{16} - 8 x^{15} + 32 x^{14} - 84 x^{13} + 150 x^{12} - 164 x^{11} + 60 x^{10} + 124 x^{9} - 217 x^{8} + 108 x^{7} + 120 x^{6} - 304 x^{5} + 346 x^{4} - 272 x^{3} + 132 x^{2} - 24 x + 2 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(101415451701035401216=2^{44}\cdot 7^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $17.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{5} a^{13} - \frac{1}{5} a^{12} + \frac{2}{5} a^{11} + \frac{2}{5} a^{10} - \frac{1}{5} a^{9} + \frac{1}{5} a^{8} - \frac{2}{5} a^{7} - \frac{2}{5} a^{6} - \frac{1}{5} a^{5} - \frac{1}{5} a^{4} - \frac{2}{5} a^{3} + \frac{1}{5} a^{2} + \frac{2}{5}$, $\frac{1}{25} a^{14} - \frac{9}{25} a^{12} - \frac{6}{25} a^{11} - \frac{4}{25} a^{10} - \frac{1}{25} a^{8} - \frac{9}{25} a^{7} + \frac{2}{25} a^{6} - \frac{7}{25} a^{5} + \frac{7}{25} a^{4} - \frac{11}{25} a^{3} - \frac{4}{25} a^{2} - \frac{3}{25} a - \frac{3}{25}$, $\frac{1}{225190962125} a^{15} + \frac{786330126}{225190962125} a^{14} + \frac{6649990641}{225190962125} a^{13} + \frac{17173328887}{45038192425} a^{12} - \frac{15705465117}{45038192425} a^{11} + \frac{107310878346}{225190962125} a^{10} + \frac{21428899274}{225190962125} a^{9} + \frac{17609423793}{45038192425} a^{8} + \frac{111793338868}{225190962125} a^{7} - \frac{17807759496}{45038192425} a^{6} + \frac{308203059}{1801527697} a^{5} - \frac{26512836129}{225190962125} a^{4} - \frac{18720713323}{45038192425} a^{3} + \frac{45307664218}{225190962125} a^{2} - \frac{50056340181}{225190962125} a - \frac{3260012078}{225190962125}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{217145508}{1801527697} a^{15} + \frac{1829330222}{1801527697} a^{14} - \frac{7503499398}{1801527697} a^{13} + \frac{19977175722}{1801527697} a^{12} - \frac{36207948730}{1801527697} a^{11} + \frac{40198201610}{1801527697} a^{10} - \frac{14780806618}{1801527697} a^{9} - \frac{30514343897}{1801527697} a^{8} + \frac{54637973262}{1801527697} a^{7} - \frac{27280755274}{1801527697} a^{6} - \frac{28872311984}{1801527697} a^{5} + \frac{75288637119}{1801527697} a^{4} - \frac{84847302068}{1801527697} a^{3} + \frac{64292802234}{1801527697} a^{2} - \frac{30315797828}{1801527697} a + \frac{3333781121}{1801527697} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 14663.944366 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\wr C_2^2$ (as 16T149):
| A solvable group of order 64 |
| The 16 conjugacy class representatives for $C_2\wr C_2^2$ |
| Character table for $C_2\wr C_2^2$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{7}) \), \(\Q(\sqrt{-7}) \), 4.0.512.1, 4.0.25088.2, \(\Q(i, \sqrt{7})\), 8.0.314703872.5 x2, 8.0.629407744.2, 8.0.205520896.3 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.22.111 | $x^{8} + 4 x^{7} + 10 x^{4} + 12 x^{2} + 10$ | $8$ | $1$ | $22$ | $C_2^2 \wr C_2$ | $[2, 2, 3, 7/2]^{2}$ |
| 2.8.22.111 | $x^{8} + 4 x^{7} + 10 x^{4} + 12 x^{2} + 10$ | $8$ | $1$ | $22$ | $C_2^2 \wr C_2$ | $[2, 2, 3, 7/2]^{2}$ | |
| $7$ | 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |