Normalized defining polynomial
\( x^{16} - 10 x^{14} + 57 x^{12} - 198 x^{10} + 396 x^{8} - 430 x^{6} + 281 x^{4} - 130 x^{2} + 49 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1013656882862280933376=2^{32}\cdot 17^{4}\cdot 41^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{6} a^{8} + \frac{1}{6} a^{6} - \frac{1}{3} a^{4} - \frac{1}{6} a^{2} - \frac{1}{6}$, $\frac{1}{6} a^{9} + \frac{1}{6} a^{7} - \frac{1}{3} a^{5} - \frac{1}{6} a^{3} - \frac{1}{6} a$, $\frac{1}{12} a^{10} - \frac{1}{12} a^{9} - \frac{1}{12} a^{7} - \frac{1}{4} a^{6} - \frac{1}{3} a^{5} + \frac{1}{12} a^{4} - \frac{5}{12} a^{3} - \frac{5}{12} a + \frac{1}{12}$, $\frac{1}{12} a^{11} - \frac{1}{12} a^{9} - \frac{1}{12} a^{8} + \frac{1}{6} a^{7} - \frac{1}{12} a^{6} - \frac{1}{4} a^{5} - \frac{1}{3} a^{4} - \frac{5}{12} a^{3} - \frac{5}{12} a^{2} + \frac{1}{6} a - \frac{5}{12}$, $\frac{1}{24} a^{12} - \frac{1}{12} a^{9} - \frac{1}{12} a^{8} - \frac{1}{12} a^{7} + \frac{1}{12} a^{6} - \frac{1}{3} a^{5} + \frac{1}{6} a^{4} - \frac{5}{12} a^{3} - \frac{1}{4} a^{2} - \frac{5}{12} a + \frac{5}{24}$, $\frac{1}{48} a^{13} - \frac{1}{48} a^{12} - \frac{1}{24} a^{11} - \frac{1}{24} a^{10} - \frac{1}{24} a^{9} + \frac{1}{24} a^{8} - \frac{1}{12} a^{7} - \frac{1}{6} a^{6} - \frac{11}{24} a^{5} + \frac{3}{8} a^{4} - \frac{1}{8} a^{3} + \frac{1}{8} a^{2} - \frac{3}{16} a - \frac{19}{48}$, $\frac{1}{3504} a^{14} - \frac{7}{1168} a^{12} - \frac{1}{876} a^{10} - \frac{77}{1752} a^{8} - \frac{415}{1752} a^{6} + \frac{277}{876} a^{4} + \frac{941}{3504} a^{2} - \frac{1721}{3504}$, $\frac{1}{49056} a^{15} - \frac{1}{7008} a^{14} + \frac{139}{16352} a^{13} - \frac{125}{7008} a^{12} + \frac{3}{511} a^{11} - \frac{3}{73} a^{10} + \frac{23}{8176} a^{9} - \frac{23}{1168} a^{8} - \frac{5087}{24528} a^{7} + \frac{415}{3504} a^{6} + \frac{17}{1022} a^{5} + \frac{28}{73} a^{4} + \frac{21673}{49056} a^{3} + \frac{173}{2336} a^{2} + \frac{3097}{49056} a - \frac{2221}{7008}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8657.31768557 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times D_4^2.C_2$ (as 16T602):
| A solvable group of order 256 |
| The 40 conjugacy class representatives for $C_2\times D_4^2.C_2$ |
| Character table for $C_2\times D_4^2.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.0.1088.2, 4.4.2624.1, 4.0.44608.5, 8.4.1872822272.1, 8.4.1872822272.2, 8.0.1989873664.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.16.13 | $x^{8} + 6 x^{6} + 4 x^{5} + 2 x^{4} + 4$ | $4$ | $2$ | $16$ | $D_4\times C_2$ | $[2, 2, 3]^{2}$ |
| 2.8.16.13 | $x^{8} + 6 x^{6} + 4 x^{5} + 2 x^{4} + 4$ | $4$ | $2$ | $16$ | $D_4\times C_2$ | $[2, 2, 3]^{2}$ | |
| $17$ | 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $41$ | 41.4.0.1 | $x^{4} - x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 41.4.2.1 | $x^{4} + 943 x^{2} + 242064$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 41.4.2.1 | $x^{4} + 943 x^{2} + 242064$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 41.4.0.1 | $x^{4} - x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |