Normalized defining polynomial
\( x^{16} - 4 x^{15} + 516 x^{14} - 2936 x^{13} + 107194 x^{12} - 641420 x^{11} + 11627920 x^{10} - 66371504 x^{9} + 728118680 x^{8} - 3717247748 x^{7} + 27035672060 x^{6} - 114044064440 x^{5} + 572310574986 x^{4} - 1784176112812 x^{3} + 6210498313016 x^{2} - 11384486485632 x + 25628389555519 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(101075408216203634510751650650521600000000=2^{40}\cdot 3^{4}\cdot 5^{8}\cdot 13^{8}\cdot 1249^{2}\cdot 1511^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $365.42$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 13, 1249, 1511$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{3}$, $\frac{1}{12} a^{12} + \frac{1}{6} a^{11} - \frac{1}{6} a^{10} + \frac{1}{12} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{5}{12} a^{4} + \frac{1}{6} a^{3} - \frac{1}{2} a^{2} + \frac{1}{12}$, $\frac{1}{12} a^{13} - \frac{1}{6} a^{10} + \frac{1}{12} a^{9} + \frac{1}{3} a^{6} + \frac{5}{12} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{2} a^{2} + \frac{1}{12} a + \frac{1}{3}$, $\frac{1}{1596} a^{14} - \frac{47}{1596} a^{13} - \frac{2}{133} a^{12} + \frac{113}{798} a^{11} + \frac{5}{1596} a^{10} + \frac{253}{1596} a^{9} + \frac{3}{19} a^{8} + \frac{199}{399} a^{7} + \frac{167}{532} a^{6} - \frac{29}{532} a^{5} - \frac{13}{133} a^{4} - \frac{269}{798} a^{3} + \frac{91}{228} a^{2} - \frac{463}{1596} a + \frac{52}{399}$, $\frac{1}{40612616226770842118312083237546302726572331428216274640536747877651007891794445388} a^{15} - \frac{4387900310286924076430336898267780916563717602945637116654299666634773794660469}{20306308113385421059156041618773151363286165714108137320268373938825503945897222694} a^{14} + \frac{355820203080679921721710243317060976516664596462834063830119723066082736016762797}{13537538742256947372770694412515434242190777142738758213512249292550335963931481796} a^{13} - \frac{75027094784452182879243699759682870367299113664197546371204970207489332551937147}{1933934106036706767538670630359347748884396734676965459073178470364333709133068828} a^{12} - \frac{3160622018014532709959376120144453319678265475124901350777692634351768556685978703}{13537538742256947372770694412515434242190777142738758213512249292550335963931481796} a^{11} - \frac{646716974321175698804511487173385514982810668393205429115894574692304726005823615}{6768769371128473686385347206257717121095388571369379106756124646275167981965740898} a^{10} + \frac{892642501887709250623846733711630856377529751470362739463936059334365107581184131}{13537538742256947372770694412515434242190777142738758213512249292550335963931481796} a^{9} + \frac{3145268636958628445673034999643380921840891793491408554054096124871961525776449709}{13537538742256947372770694412515434242190777142738758213512249292550335963931481796} a^{8} - \frac{8924357435080789297676517681754064634799218633205103959975474919249916624795975311}{40612616226770842118312083237546302726572331428216274640536747877651007891794445388} a^{7} + \frac{9085505919381014567571152375978389803873704892273202465536293204685259380571494079}{20306308113385421059156041618773151363286165714108137320268373938825503945897222694} a^{6} - \frac{3762166624718487435666994277176915123450885364505859713787401543016280881680886523}{13537538742256947372770694412515434242190777142738758213512249292550335963931481796} a^{5} + \frac{2592823479882778891675171238649359797465792729587471936233857490281010473864956603}{13537538742256947372770694412515434242190777142738758213512249292550335963931481796} a^{4} + \frac{2973849398837536546135151487511996840797943473261999391376409210888020085558882647}{40612616226770842118312083237546302726572331428216274640536747877651007891794445388} a^{3} - \frac{9576243711374483153222034475742334478921194157027272455952081258945003929258196467}{20306308113385421059156041618773151363286165714108137320268373938825503945897222694} a^{2} + \frac{12204959863170727528277538412173804695523609943162340054915940426688822520438761321}{40612616226770842118312083237546302726572331428216274640536747877651007891794445388} a + \frac{12880920928512594217650422192465650233283554952100978454595240518395777077704703391}{40612616226770842118312083237546302726572331428216274640536747877651007891794445388}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{29994700}$, which has order $959830400$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 113414.110194 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 4096 |
| The 133 conjugacy class representatives for t16n1547 are not computed |
| Character table for t16n1547 is not computed |
Intermediate fields
| \(\Q(\sqrt{26}) \), \(\Q(\sqrt{13}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{2}, \sqrt{13})\), 8.8.421149081600.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $5$ | 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $13$ | 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 1249 | Data not computed | ||||||
| 1511 | Data not computed | ||||||