Normalized defining polynomial
\( x^{16} + 1168 x^{14} - 1716 x^{13} + 511010 x^{12} - 1113408 x^{11} + 112405248 x^{10} - 267407364 x^{9} + 13586028503 x^{8} - 29544777456 x^{7} + 903868150860 x^{6} - 1458109683324 x^{5} + 30925819337576 x^{4} - 25388246588088 x^{3} + 490041878843476 x^{2} - 119034342218376 x + 3136651030534129 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(101075408216203634510751650650521600000000=2^{40}\cdot 3^{4}\cdot 5^{8}\cdot 13^{8}\cdot 1249^{2}\cdot 1511^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $365.42$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 13, 1249, 1511$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{8} - \frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{9} - \frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{9} a^{12} - \frac{1}{9} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{7} - \frac{2}{9} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{9} a^{2} + \frac{1}{9}$, $\frac{1}{9} a^{13} - \frac{1}{9} a^{11} - \frac{2}{9} a^{7} + \frac{1}{3} a^{5} - \frac{1}{9} a^{3} - \frac{1}{3} a^{2} + \frac{1}{9} a - \frac{1}{3}$, $\frac{1}{24960987} a^{14} + \frac{264658}{8320329} a^{13} + \frac{132103}{2773443} a^{12} - \frac{1159}{2773443} a^{11} + \frac{2001941}{24960987} a^{10} - \frac{1583251}{8320329} a^{9} - \frac{7848677}{24960987} a^{8} + \frac{2513026}{8320329} a^{7} + \frac{9435106}{24960987} a^{6} + \frac{2266534}{8320329} a^{5} - \frac{6833140}{24960987} a^{4} - \frac{3440027}{8320329} a^{3} - \frac{1302850}{2773443} a^{2} + \frac{1326634}{8320329} a - \frac{5055083}{24960987}$, $\frac{1}{17347795488301797026158747239043798860213519603398811020267855944784989607575257028193007834771639} a^{15} - \frac{328522758127639977281949423104533195681890285170252087750073582380873344130281546680284147}{17347795488301797026158747239043798860213519603398811020267855944784989607575257028193007834771639} a^{14} + \frac{264356100235845600874755743046371581252945310378274976402810447492192999351919813906681262065105}{5782598496100599008719582413014599620071173201132937006755951981594996535858419009397669278257213} a^{13} + \frac{26612952409118701795995933352122655302701490738565030664296259209247353336710948643012768972448}{826085499442942715531368916144942802867310457304705286679421711656428076551202715628238468322459} a^{12} + \frac{2316325069804015776761458183630956628812535457352207418948497937870581069967174678949532935995547}{17347795488301797026158747239043798860213519603398811020267855944784989607575257028193007834771639} a^{11} - \frac{2033131137652400046592652279419173082089887825801295309210551687897965492607407061441593144926373}{17347795488301797026158747239043798860213519603398811020267855944784989607575257028193007834771639} a^{10} + \frac{2563621849962522416852474368256211081271376195088437586772298657825955140609027768073599253012844}{17347795488301797026158747239043798860213519603398811020267855944784989607575257028193007834771639} a^{9} + \frac{3679383119795529308328143711362660983118595475732060815959478657975101874986147207783320292114618}{17347795488301797026158747239043798860213519603398811020267855944784989607575257028193007834771639} a^{8} + \frac{303678797472937077668992300835646716958403970152385347169799316767402136790562627830691178450780}{17347795488301797026158747239043798860213519603398811020267855944784989607575257028193007834771639} a^{7} + \frac{1232416828192233055094355363493178103858086910559359244517864967379459303942555326366075917884480}{2478256498328828146594106748434828408601931371914115860038265134969284229653608146884715404967377} a^{6} + \frac{4352389532604661507061739523185542668133073540832261691296944470252697564690625191367222312908110}{17347795488301797026158747239043798860213519603398811020267855944784989607575257028193007834771639} a^{5} + \frac{423137927079468590481498920457969562543889523741648693982103071998342177869685357787781910845854}{1020458558135399825068161602296694050600795270788165354133403290869705271033838648717235754986567} a^{4} - \frac{33982135964418628612034165847308124488122104646409154166711818358860419274828072370180932196835}{91787277715882523947929879571660311429701161922745031853269079072936452950133635069804274258051} a^{3} + \frac{1561182056127067380165976083881738833288049579973758400181323049941463133911813971008335176138335}{5782598496100599008719582413014599620071173201132937006755951981594996535858419009397669278257213} a^{2} - \frac{8526409725962156989737839783871100766956858823496019727911390646146332450344170435901949095607848}{17347795488301797026158747239043798860213519603398811020267855944784989607575257028193007834771639} a - \frac{6713912611631954243434987271824510264194396612766563658134561534960346582940515364456811406910744}{17347795488301797026158747239043798860213519603398811020267855944784989607575257028193007834771639}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{31008660}$, which has order $992277120$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 113414.110194 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 4096 |
| The 133 conjugacy class representatives for t16n1547 are not computed |
| Character table for t16n1547 is not computed |
Intermediate fields
| \(\Q(\sqrt{13}) \), \(\Q(\sqrt{26}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{2}, \sqrt{13})\), 8.8.421149081600.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| $5$ | 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $13$ | 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 1249 | Data not computed | ||||||
| 1511 | Data not computed | ||||||