Normalized defining polynomial
\( x^{16} - 2 x^{15} + 15 x^{14} - 30 x^{13} + 70 x^{12} - 76 x^{11} + 72 x^{10} - 140 x^{9} + 45 x^{8} + 140 x^{7} + 72 x^{6} + 76 x^{5} + 70 x^{4} + 30 x^{3} + 15 x^{2} + 2 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1008403552400000000000000=2^{16}\cdot 5^{14}\cdot 1361^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.64$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 1361$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{5} a^{8} - \frac{1}{5} a^{7} + \frac{2}{5} a^{6} + \frac{2}{5} a^{5} - \frac{2}{5} a^{3} + \frac{2}{5} a^{2} + \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{9} + \frac{1}{5} a^{7} - \frac{1}{5} a^{6} + \frac{2}{5} a^{5} - \frac{2}{5} a^{4} - \frac{2}{5} a^{2} + \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{10} + \frac{1}{5} a^{5} - \frac{1}{5}$, $\frac{1}{5} a^{11} + \frac{1}{5} a^{6} - \frac{1}{5} a$, $\frac{1}{20} a^{12} - \frac{1}{10} a^{11} + \frac{1}{20} a^{8} - \frac{1}{2} a^{7} + \frac{1}{4} a^{6} + \frac{1}{10} a^{5} + \frac{1}{4} a^{4} + \frac{2}{5} a^{3} - \frac{1}{5} a^{2} - \frac{1}{10} a + \frac{1}{20}$, $\frac{1}{20} a^{13} + \frac{1}{20} a^{9} - \frac{3}{20} a^{7} - \frac{2}{5} a^{6} + \frac{1}{4} a^{5} - \frac{1}{10} a^{4} - \frac{1}{5} a^{3} + \frac{3}{10} a^{2} + \frac{1}{20} a - \frac{1}{2}$, $\frac{1}{112100} a^{14} + \frac{967}{112100} a^{13} + \frac{251}{28025} a^{12} + \frac{1037}{28025} a^{11} + \frac{1701}{112100} a^{10} + \frac{4471}{112100} a^{9} - \frac{9703}{112100} a^{8} - \frac{31921}{112100} a^{7} - \frac{46347}{112100} a^{6} + \frac{15681}{112100} a^{5} - \frac{26073}{56050} a^{4} - \frac{3531}{56050} a^{3} - \frac{51449}{112100} a^{2} + \frac{12177}{112100} a + \frac{19617}{56050}$, $\frac{1}{112100} a^{15} + \frac{39}{2242} a^{13} - \frac{7}{295} a^{12} + \frac{753}{22420} a^{11} - \frac{934}{28025} a^{10} + \frac{2143}{22420} a^{9} + \frac{87}{5605} a^{8} + \frac{6599}{22420} a^{7} - \frac{2919}{11210} a^{6} - \frac{21469}{56050} a^{5} + \frac{2917}{11210} a^{4} - \frac{3151}{22420} a^{3} - \frac{405}{2242} a^{2} + \frac{2897}{11210} a + \frac{12853}{28025}$
Class group and class number
$C_{8}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 81146.1229534 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2048 |
| The 59 conjugacy class representatives for t16n1354 are not computed |
| Character table for t16n1354 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{20})^+\), 8.0.5444000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | R | $16$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | $16$ | $16$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| $5$ | 5.8.7.2 | $x^{8} - 20$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 5.8.7.2 | $x^{8} - 20$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| 1361 | Data not computed | ||||||