Normalized defining polynomial
\( x^{16} + 251 x^{14} + 29216 x^{12} + 1553004 x^{10} - 384112 x^{8} - 6482672352 x^{6} - 126783269440 x^{4} + 10760419375552 x^{2} + 730449208214272 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1008059438600408027895860714799583101155540992=2^{20}\cdot 43^{7}\cdot 2777^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $649.71$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 43, 2777$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{4}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{5}$, $\frac{1}{8} a^{8} - \frac{1}{8} a^{6}$, $\frac{1}{16} a^{9} + \frac{1}{16} a^{7} - \frac{1}{8} a^{5} - \frac{1}{2} a$, $\frac{1}{32} a^{10} + \frac{1}{32} a^{8} - \frac{1}{16} a^{6} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{32} a^{11} - \frac{1}{32} a^{9} - \frac{1}{8} a^{7} + \frac{1}{8} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{448} a^{12} - \frac{3}{448} a^{10} - \frac{11}{224} a^{8} + \frac{1}{56} a^{6} - \frac{1}{4} a^{5} - \frac{5}{56} a^{4} - \frac{1}{4} a^{3} - \frac{1}{14} a^{2} + \frac{3}{7}$, $\frac{1}{448} a^{13} - \frac{3}{448} a^{11} + \frac{3}{224} a^{9} + \frac{9}{112} a^{7} - \frac{3}{14} a^{5} - \frac{1}{14} a^{3} - \frac{1}{2} a^{2} - \frac{1}{14} a$, $\frac{1}{36014504596595979172949750934668283976576} a^{14} - \frac{2492627004621656137959709988875734795}{36014504596595979172949750934668283976576} a^{12} + \frac{114669718810667470005214666991061693233}{18007252298297989586474875467334141988288} a^{10} - \frac{269349153071258763600278706992395059725}{4501813074574497396618718866833535497072} a^{8} - \frac{1}{8} a^{7} - \frac{120873770257392101101644709396326628101}{4501813074574497396618718866833535497072} a^{6} + \frac{1}{8} a^{5} + \frac{41687573841808016841887709511553084323}{562726634321812174577339858354191937134} a^{4} - \frac{143549673753961941291359289364370682925}{562726634321812174577339858354191937134} a^{2} - \frac{14190057050602881918527452049751406315}{40194759594415155326952847025299424081}$, $\frac{1}{9277228340569334447014336991517745947514047872} a^{15} - \frac{5376292756937598137568042966425938643113031}{9277228340569334447014336991517745947514047872} a^{13} - \frac{71160044600080269680882083913370704540523871}{4638614170284667223507168495758872973757023936} a^{11} + \frac{67580960540523373306600295741420227187893981}{2319307085142333611753584247879436486878511968} a^{9} - \frac{23170390041970873680323070312443249338120551}{1159653542571166805876792123939718243439255984} a^{7} - \frac{55106245732253894493855081428142084711352493}{579826771285583402938396061969859121719627992} a^{5} - \frac{71152849559583243807877877758528642752431645}{289913385642791701469198030984929560859813996} a^{3} + \frac{5442221484690927580039597573780366619482527}{20708098974485121533514145070352111489986714} a$
Class group and class number
$C_{2}\times C_{4}\times C_{213576}$, which has order $1708608$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 32299810000.7 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 49152 |
| The 116 conjugacy class representatives for t16n1851 are not computed |
| Character table for t16n1851 is not computed |
Intermediate fields
| 4.4.2777.1, 8.0.302613890996463717568.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.12.18.64 | $x^{12} + 14 x^{11} + 12 x^{10} + 4 x^{9} + 10 x^{8} + 4 x^{6} + 8 x^{5} + 8 x^{4} + 16 x - 8$ | $4$ | $3$ | $18$ | 12T51 | $[2, 2, 2, 2]^{6}$ | |
| $43$ | 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 43.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 43.6.3.1 | $x^{6} - 86 x^{4} + 1849 x^{2} - 7950700$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 43.6.3.1 | $x^{6} - 86 x^{4} + 1849 x^{2} - 7950700$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 2777 | Data not computed | ||||||