Normalized defining polynomial
\( x^{16} - x^{15} + 154 x^{14} - 154 x^{13} + 9793 x^{12} - 9793 x^{11} + 332011 x^{10} - 332011 x^{9} + 6466546 x^{8} - 6466546 x^{7} + 72719524 x^{6} - 72719524 x^{5} + 452168398 x^{4} - 452168398 x^{3} + 1427894074 x^{2} - 1427894074 x + 2159688331 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(10054202156858080231167941574353=17^{15}\cdot 37^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $86.63$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(629=17\cdot 37\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{629}(1,·)$, $\chi_{629}(258,·)$, $\chi_{629}(517,·)$, $\chi_{629}(519,·)$, $\chi_{629}(73,·)$, $\chi_{629}(593,·)$, $\chi_{629}(147,·)$, $\chi_{629}(149,·)$, $\chi_{629}(223,·)$, $\chi_{629}(38,·)$, $\chi_{629}(295,·)$, $\chi_{629}(297,·)$, $\chi_{629}(554,·)$, $\chi_{629}(369,·)$, $\chi_{629}(184,·)$, $\chi_{629}(186,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{357580549} a^{9} - \frac{59581000}{357580549} a^{8} + \frac{81}{357580549} a^{7} + \frac{1134588}{357580549} a^{6} + \frac{2187}{357580549} a^{5} + \frac{25528230}{357580549} a^{4} + \frac{21870}{357580549} a^{3} - \frac{173777293}{357580549} a^{2} + \frac{59049}{357580549} a - \frac{150801886}{357580549}$, $\frac{1}{357580549} a^{10} + \frac{90}{357580549} a^{8} + \frac{178648451}{357580549} a^{7} + \frac{2835}{357580549} a^{6} + \frac{169855394}{357580549} a^{5} + \frac{36450}{357580549} a^{4} - \frac{160827849}{357580549} a^{3} + \frac{164025}{357580549} a^{2} + \frac{170226052}{357580549} a + \frac{118098}{357580549}$, $\frac{1}{357580549} a^{11} + \frac{177230216}{357580549} a^{8} - \frac{4455}{357580549} a^{7} + \frac{67742474}{357580549} a^{6} - \frac{160380}{357580549} a^{5} + \frac{44695294}{357580549} a^{4} - \frac{1804275}{357580549} a^{3} + \frac{76638266}{357580549} a^{2} - \frac{5196312}{357580549} a - \frac{15891122}{357580549}$, $\frac{1}{357580549} a^{12} - \frac{5346}{357580549} a^{8} + \frac{15316938}{357580549} a^{7} - \frac{224532}{357580549} a^{6} + \frac{59528018}{357580549} a^{5} - \frac{3247695}{357580549} a^{4} - \frac{132615043}{357580549} a^{3} - \frac{15588936}{357580549} a^{2} + \frac{27011877}{357580549} a - \frac{11691702}{357580549}$, $\frac{1}{357580549} a^{13} + \frac{99560097}{357580549} a^{8} + \frac{208494}{357580549} a^{7} + \frac{46166133}{357580549} a^{6} + \frac{8444007}{357580549} a^{5} + \frac{103113368}{357580549} a^{4} + \frac{101328084}{357580549} a^{3} + \frac{7869801}{357580549} a^{2} - \frac{53596297}{357580549} a + \frac{157255439}{357580549}$, $\frac{1}{357580549} a^{14} + \frac{265356}{357580549} a^{8} - \frac{151429646}{357580549} a^{7} + \frac{12538071}{357580549} a^{6} + \frac{131735570}{357580549} a^{5} - \frac{164136025}{357580549} a^{4} - \frac{63488728}{357580549} a^{3} - \frac{105519027}{357580549} a^{2} - \frac{142686754}{357580549} a + \frac{30982066}{357580549}$, $\frac{1}{357580549} a^{15} - \frac{41987132}{357580549} a^{8} - \frac{8955765}{357580549} a^{7} + \frac{144824500}{357580549} a^{6} - \frac{29308499}{357580549} a^{5} - \frac{126568352}{357580549} a^{4} + \frac{170014586}{357580549} a^{3} - \frac{167763388}{357580549} a^{2} + \frac{95519778}{357580549} a + \frac{61183924}{357580549}$
Class group and class number
$C_{83234}$, which has order $83234$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3640.01221338 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 16 |
| The 16 conjugacy class representatives for $C_{16}$ |
| Character table for $C_{16}$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | R | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| 37 | Data not computed | ||||||