Properties

Label 16.0.10031792466...0000.2
Degree $16$
Signature $[0, 8]$
Discriminant $2^{40}\cdot 5^{12}\cdot 41^{4}\cdot 115001^{2}$
Root discriminant $205.39$
Ramified primes $2, 5, 41, 115001$
Class number $16$ (GRH)
Class group $[2, 8]$ (GRH)
Galois group 16T1605

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1396914918855625, 0, 2424077328750, 0, 533990346625, 0, -4722706500, 0, -51985625, 0, 2149800, 0, -2635, 0, -90, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 90*x^14 - 2635*x^12 + 2149800*x^10 - 51985625*x^8 - 4722706500*x^6 + 533990346625*x^4 + 2424077328750*x^2 + 1396914918855625)
 
gp: K = bnfinit(x^16 - 90*x^14 - 2635*x^12 + 2149800*x^10 - 51985625*x^8 - 4722706500*x^6 + 533990346625*x^4 + 2424077328750*x^2 + 1396914918855625, 1)
 

Normalized defining polynomial

\( x^{16} - 90 x^{14} - 2635 x^{12} + 2149800 x^{10} - 51985625 x^{8} - 4722706500 x^{6} + 533990346625 x^{4} + 2424077328750 x^{2} + 1396914918855625 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(10031792466827489906262016000000000000=2^{40}\cdot 5^{12}\cdot 41^{4}\cdot 115001^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $205.39$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 41, 115001$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{5} a^{4}$, $\frac{1}{5} a^{5}$, $\frac{1}{5} a^{6}$, $\frac{1}{5} a^{7}$, $\frac{1}{25} a^{8}$, $\frac{1}{25} a^{9}$, $\frac{1}{25} a^{10}$, $\frac{1}{25} a^{11}$, $\frac{1}{125} a^{12}$, $\frac{1}{125} a^{13}$, $\frac{1}{3148232409460030827734140724355016567997302625} a^{14} - \frac{4097243082011012616474020483196277098292891}{3148232409460030827734140724355016567997302625} a^{12} + \frac{397445742735006023132921488538357744005759}{25185859275680246621873125794840132543978421} a^{10} + \frac{5138638494767507050898309414103893540524318}{629646481892006165546828144871003313599460525} a^{8} + \frac{12451672904824734050692179864215100828677423}{125929296378401233109365628974200662719892105} a^{6} + \frac{6627748512218465277600308054726012643465222}{125929296378401233109365628974200662719892105} a^{4} + \frac{8234225461902417963568384540947118382972910}{25185859275680246621873125794840132543978421} a^{2} - \frac{97732665851852991400553545975596654823}{219005567566197221083930798817750563421}$, $\frac{1}{40927021322980400760543829416615215383964934125} a^{15} - \frac{54468961633371505860220272072876542186249733}{40927021322980400760543829416615215383964934125} a^{13} + \frac{161051299222456630309561791982499738864014501}{8185404264596080152108765883323043076792986825} a^{11} - \frac{14083787866454646562944213594083300818282189}{1637080852919216030421753176664608615358597365} a^{9} + \frac{12451672904824734050692179864215100828677423}{1637080852919216030421753176664608615358597365} a^{7} + \frac{16437065267851841028643937087849282055080097}{327416170583843206084350635332921723071719473} a^{5} + \frac{33420084737582664585441510335787250926951331}{327416170583843206084350635332921723071719473} a^{3} + \frac{340278469280541450767308051659904472019}{2847072378360563874091100384630757324473} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{8}$, which has order $16$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 239771669518 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1605:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 4096
The 124 conjugacy class representatives for t16n1605 are not computed
Character table for t16n1605 is not computed

Intermediate fields

\(\Q(\sqrt{10}) \), 4.0.65600.5, 8.0.4303360000.6

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ R ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$5$5.4.3.3$x^{4} + 10$$4$$1$$3$$C_4$$[\ ]_{4}$
5.4.3.4$x^{4} + 40$$4$$1$$3$$C_4$$[\ ]_{4}$
5.8.6.2$x^{8} + 15 x^{4} + 100$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
$41$41.4.2.1$x^{4} + 943 x^{2} + 242064$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
41.4.0.1$x^{4} - x + 17$$1$$4$$0$$C_4$$[\ ]^{4}$
41.4.0.1$x^{4} - x + 17$$1$$4$$0$$C_4$$[\ ]^{4}$
41.4.2.1$x^{4} + 943 x^{2} + 242064$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
115001Data not computed