Normalized defining polynomial
\( x^{16} - 280 x^{14} + 56040 x^{12} - 7400800 x^{10} + 779073750 x^{8} - 60269405000 x^{6} + 3199905061000 x^{4} - 101932286360000 x^{2} + 1396914918855625 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(10031792466827489906262016000000000000=2^{40}\cdot 5^{12}\cdot 41^{4}\cdot 115001^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $205.39$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 41, 115001$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{10} a^{4} - \frac{1}{2}$, $\frac{1}{10} a^{5} - \frac{1}{2} a$, $\frac{1}{10} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{10} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{400} a^{8} + \frac{1}{4} a^{2} + \frac{7}{16}$, $\frac{1}{400} a^{9} + \frac{1}{4} a^{3} + \frac{7}{16} a$, $\frac{1}{800} a^{10} - \frac{1}{800} a^{8} + \frac{1}{40} a^{4} - \frac{13}{32} a^{2} - \frac{7}{32}$, $\frac{1}{800} a^{11} - \frac{1}{800} a^{9} + \frac{1}{40} a^{5} - \frac{13}{32} a^{3} - \frac{7}{32} a$, $\frac{1}{12000} a^{12} + \frac{1}{2400} a^{8} + \frac{1}{120} a^{6} + \frac{23}{480} a^{4} + \frac{1}{24} a^{2} + \frac{23}{96}$, $\frac{1}{12000} a^{13} + \frac{1}{2400} a^{9} + \frac{1}{120} a^{7} + \frac{23}{480} a^{5} + \frac{1}{24} a^{3} + \frac{23}{96} a$, $\frac{1}{422547606179499623886146710269419544000} a^{14} + \frac{10175655407548528409628340963440799}{422547606179499623886146710269419544000} a^{12} + \frac{9941774899286413431233563607502683}{16901904247179984955445868410776781760} a^{10} - \frac{5604075402637289647998329541892227}{9389946803988880530803260228209323200} a^{8} - \frac{59092219760134741128508446859743653}{1877989360797776106160652045641864640} a^{6} + \frac{164583802098552728547031888458049073}{3380380849435996991089173682155356352} a^{4} + \frac{533839995086469888410777050031450519}{1126793616478665663696391227385118784} a^{2} - \frac{7307878899774723821936354762081}{29394360478917548465571374876352}$, $\frac{1}{5493118880333495110519907233502454072000} a^{15} + \frac{10175655407548528409628340963440799}{5493118880333495110519907233502454072000} a^{13} - \frac{584112534772817368673052247366615901}{1098623776066699022103981446700490814400} a^{11} + \frac{41345658617307113006017971599154389}{122069308451855446900442382966721201600} a^{9} + \frac{9900516639972528422119750592649447}{1877989360797776106160652045641864640} a^{7} + \frac{3358204647569761386052039703906762629}{219724755213339804420796289340098162880} a^{5} - \frac{3198663859499110122583518890681755453}{14648317014222653628053085956006544192} a^{3} - \frac{113862435635850837009632588688857}{382126686225928130052427873392576} a$
Class group and class number
$C_{2}\times C_{8}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 169085130823 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 4096 |
| The 124 conjugacy class representatives for t16n1605 are not computed |
| Character table for t16n1605 is not computed |
Intermediate fields
| \(\Q(\sqrt{10}) \), 4.0.65600.5, 8.0.4303360000.6 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.4.3.4 | $x^{4} + 40$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.3 | $x^{4} + 10$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $41$ | 41.4.0.1 | $x^{4} - x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 41.4.2.1 | $x^{4} + 943 x^{2} + 242064$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 41.4.2.1 | $x^{4} + 943 x^{2} + 242064$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 41.4.0.1 | $x^{4} - x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 115001 | Data not computed | ||||||