Normalized defining polynomial
\( x^{16} - 3 x^{15} + 110 x^{14} - 205 x^{13} + 4689 x^{12} - 3878 x^{11} + 101693 x^{10} + 19015 x^{9} + 1258001 x^{8} + 1498347 x^{7} + 9604628 x^{6} + 19095936 x^{5} + 49007769 x^{4} + 100830379 x^{3} + 159770709 x^{2} + 203130409 x + 194676821 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1002674797153076232861572265625=5^{12}\cdot 29^{6}\cdot 1621^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $75.00$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 29, 1621$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{83} a^{14} - \frac{1}{83} a^{13} + \frac{15}{83} a^{12} + \frac{1}{83} a^{11} - \frac{24}{83} a^{10} - \frac{35}{83} a^{9} + \frac{22}{83} a^{8} - \frac{13}{83} a^{7} - \frac{27}{83} a^{6} + \frac{24}{83} a^{5} + \frac{20}{83} a^{4} + \frac{9}{83} a^{3} - \frac{12}{83} a^{2} + \frac{39}{83} a - \frac{26}{83}$, $\frac{1}{1038209248747415623004431960565462216724325955978117} a^{15} - \frac{232914558316538347548315428227704285537174799129}{1038209248747415623004431960565462216724325955978117} a^{14} - \frac{403893927178505756491302477601489929241903157037641}{1038209248747415623004431960565462216724325955978117} a^{13} - \frac{501007389863373610366478508013852836204226445034065}{1038209248747415623004431960565462216724325955978117} a^{12} + \frac{15259270508102509238318287305057319773062738912431}{1038209248747415623004431960565462216724325955978117} a^{11} + \frac{238921286456025392654288594256809614043261653412500}{1038209248747415623004431960565462216724325955978117} a^{10} + \frac{145312410920740444903716681936162678174141745702632}{1038209248747415623004431960565462216724325955978117} a^{9} + \frac{484220008631017480641955878689655785135919738466178}{1038209248747415623004431960565462216724325955978117} a^{8} - \frac{49209892374876460338477264552419925254122580698821}{1038209248747415623004431960565462216724325955978117} a^{7} - \frac{179616631560382659660551400187635001284363310751763}{1038209248747415623004431960565462216724325955978117} a^{6} + \frac{36613823164605439040388455906870350536510247197559}{1038209248747415623004431960565462216724325955978117} a^{5} - \frac{430124966108220055472604139557445885913883109779116}{1038209248747415623004431960565462216724325955978117} a^{4} - \frac{384332021257610332339677430521819755002475103377016}{1038209248747415623004431960565462216724325955978117} a^{3} - \frac{260773630246722901503270499563384355938047526705352}{1038209248747415623004431960565462216724325955978117} a^{2} + \frac{170228752412800786122709745030270222869017320721656}{1038209248747415623004431960565462216724325955978117} a - \frac{244375696032530589529510269985457892727626959244332}{1038209248747415623004431960565462216724325955978117}$
Class group and class number
$C_{2}\times C_{2}\times C_{6906}$, which has order $27624$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5728.02182166 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 43 conjugacy class representatives for t16n1276 |
| Character table for t16n1276 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.725.1, 8.8.852038125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $29$ | 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.8.6.1 | $x^{8} - 203 x^{4} + 68121$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 1621 | Data not computed | ||||||