Normalized defining polynomial
\( x^{16} - x^{15} - 15 x^{14} + 8 x^{13} + 98 x^{12} + 27 x^{11} - 304 x^{10} - 478 x^{9} + 135 x^{8} + 1876 x^{7} + 2092 x^{6} - 2537 x^{5} - 6198 x^{4} - 1338 x^{3} + 5643 x^{2} + 5701 x + 1831 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(10019302138916015625=3^{8}\cdot 5^{12}\cdot 41^{2}\cdot 61^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $15.40$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 41, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{10} a^{12} + \frac{2}{5} a^{10} + \frac{3}{10} a^{9} - \frac{2}{5} a^{8} + \frac{2}{5} a^{7} + \frac{3}{10} a^{6} + \frac{2}{5} a^{5} + \frac{2}{5} a^{4} - \frac{1}{2} a^{3} + \frac{2}{5} a^{2} + \frac{1}{5} a + \frac{1}{10}$, $\frac{1}{10} a^{13} + \frac{2}{5} a^{11} + \frac{3}{10} a^{10} - \frac{2}{5} a^{9} + \frac{2}{5} a^{8} + \frac{3}{10} a^{7} + \frac{2}{5} a^{6} + \frac{2}{5} a^{5} - \frac{1}{2} a^{4} + \frac{2}{5} a^{3} + \frac{1}{5} a^{2} + \frac{1}{10} a$, $\frac{1}{10} a^{14} + \frac{3}{10} a^{11} + \frac{1}{5} a^{9} - \frac{1}{10} a^{8} - \frac{1}{5} a^{7} + \frac{1}{5} a^{6} - \frac{1}{10} a^{5} - \frac{1}{5} a^{4} + \frac{1}{5} a^{3} - \frac{1}{2} a^{2} + \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{797458034933290} a^{15} - \frac{34452477603367}{797458034933290} a^{14} + \frac{3410665003425}{159491606986658} a^{13} + \frac{15274389554117}{398729017466645} a^{12} - \frac{45070487960201}{797458034933290} a^{11} + \frac{273604647067551}{797458034933290} a^{10} + \frac{113601618729894}{398729017466645} a^{9} + \frac{193912057703471}{797458034933290} a^{8} - \frac{71474402250347}{159491606986658} a^{7} - \frac{86447660463906}{398729017466645} a^{6} - \frac{222095910176951}{797458034933290} a^{5} - \frac{75599659286783}{159491606986658} a^{4} - \frac{168871961007687}{398729017466645} a^{3} + \frac{340491944158481}{797458034933290} a^{2} - \frac{97814526587181}{797458034933290} a - \frac{282476310646041}{797458034933290}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{37918065648477}{79745803493329} a^{15} - \frac{98423729600317}{79745803493329} a^{14} - \frac{4118711628640943}{797458034933290} a^{13} + \frac{9614907975997109}{797458034933290} a^{12} + \frac{10909657485571839}{398729017466645} a^{11} - \frac{24658490557919913}{797458034933290} a^{10} - \frac{75894155370888001}{797458034933290} a^{9} - \frac{29955004619289034}{398729017466645} a^{8} + \frac{146904520790949727}{797458034933290} a^{7} + \frac{95362979537864009}{159491606986658} a^{6} + \frac{15538549247651327}{398729017466645} a^{5} - \frac{1012635238404142459}{797458034933290} a^{4} - \frac{731423142894640927}{797458034933290} a^{3} + \frac{66305369001424241}{79745803493329} a^{2} + \frac{216195171486460389}{159491606986658} a + \frac{433756932965217939}{797458034933290} \) (order $30$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9841.14273053 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 62 conjugacy class representatives for t16n797 are not computed |
| Character table for t16n797 is not computed |
Intermediate fields
| \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-3}) \), \(\Q(\zeta_{15})^+\), \(\Q(\zeta_{5})\), \(\Q(\sqrt{-3}, \sqrt{5})\), \(\Q(\zeta_{15})\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | R | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $41$ | 41.4.2.2 | $x^{4} - 41 x^{2} + 20172$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 41.4.0.1 | $x^{4} - x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 41.4.0.1 | $x^{4} - x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 41.4.0.1 | $x^{4} - x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 61 | Data not computed | ||||||