Normalized defining polynomial
\( x^{15} - 2055 x^{13} - 7672 x^{12} + 1689210 x^{11} + 12612768 x^{10} - 716487806 x^{9} - 7775771472 x^{8} + 170071858773 x^{7} + 2260733557600 x^{6} - 22989137783499 x^{5} - 325916709388536 x^{4} + 1930435159845344 x^{3} + 21988813850200512 x^{2} - 159305388838030848 x + 215817165520608256 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[9, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-95997288591377091612527656182883144142091264=-\,2^{10}\cdot 3^{21}\cdot 137^{10}\cdot 1567^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $855.36$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 137, 1567$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{548} a^{3} + \frac{1}{4} a$, $\frac{1}{548} a^{4} + \frac{1}{4} a^{2}$, $\frac{1}{548} a^{5} - \frac{1}{4} a$, $\frac{1}{900912} a^{6} - \frac{1}{1096} a^{4} + \frac{1}{1644} a^{3} + \frac{3}{16} a^{2} - \frac{1}{4} a + \frac{1}{3}$, $\frac{1}{900912} a^{7} - \frac{1}{1096} a^{5} + \frac{1}{1644} a^{4} - \frac{1}{2192} a^{3} - \frac{1}{4} a^{2} - \frac{5}{12} a$, $\frac{1}{900912} a^{8} + \frac{1}{1644} a^{5} - \frac{1}{2192} a^{4} + \frac{11}{24} a^{2} + \frac{1}{4} a$, $\frac{1}{493699776} a^{9} - \frac{1}{3603648} a^{7} - \frac{7}{8768} a^{5} - \frac{1}{1644} a^{4} + \frac{7}{8768} a^{3} + \frac{1}{4} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{493699776} a^{10} - \frac{1}{3603648} a^{8} - \frac{1}{3603648} a^{6} - \frac{1}{1644} a^{5} - \frac{1}{8768} a^{4} - \frac{1}{1644} a^{3} + \frac{11}{48} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{493699776} a^{11} - \frac{1}{1801824} a^{7} + \frac{1}{1644} a^{4} - \frac{5}{8768} a^{3} + \frac{5}{12} a^{2} - \frac{5}{12} a$, $\frac{1}{6193643396638464} a^{12} - \frac{1}{3767422990656} a^{10} - \frac{1187}{5651134485984} a^{9} + \frac{3}{18332958592} a^{8} + \frac{1187}{4583239648} a^{7} - \frac{3175}{9166479296} a^{6} - \frac{3561}{33454304} a^{5} + \frac{67569}{267634432} a^{4} - \frac{162143}{301088736} a^{3} - \frac{6219}{122096} a^{2} + \frac{19675}{91572} a + \frac{10294}{68679}$, $\frac{1}{6193643396638464} a^{13} - \frac{1}{3767422990656} a^{11} - \frac{1187}{5651134485984} a^{10} + \frac{3}{18332958592} a^{9} + \frac{1187}{4583239648} a^{8} - \frac{3175}{9166479296} a^{7} + \frac{527}{4583239648} a^{6} + \frac{67569}{267634432} a^{5} - \frac{162143}{301088736} a^{4} + \frac{2669}{16727152} a^{3} + \frac{19675}{91572} a^{2} + \frac{10294}{68679} a$, $\frac{1}{1649608788617291863296} a^{14} - \frac{437}{68733699525720494304} a^{13} - \frac{7}{6020470031449970304} a^{12} + \frac{749248301}{3010235015724985152} a^{11} + \frac{1087916879}{2006823343816656768} a^{10} - \frac{272226605}{752558753931246288} a^{9} + \frac{11756271}{187799302247488} a^{8} - \frac{133273135}{1220695464608672} a^{7} - \frac{3357039931}{9765563716869376} a^{6} - \frac{35782020107}{80191672857504} a^{5} - \frac{6318206137}{106922230476672} a^{4} - \frac{39801704951}{160383345715008} a^{3} + \frac{494211589}{8607951144} a^{2} - \frac{2058783646}{6097298727} a - \frac{1627101799}{18291896181}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 67205708918800000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 19440 |
| The 36 conjugacy class representatives for [3^4:2]S(5) |
| Character table for [3^4:2]S(5) is not computed |
Intermediate fields
| 5.3.14103.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.9.0.1}{9} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.9.0.1}{9} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 2.10.10.11 | $x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ | |
| $3$ | 3.3.3.1 | $x^{3} + 6 x + 3$ | $3$ | $1$ | $3$ | $S_3$ | $[3/2]_{2}$ |
| 3.12.18.2 | $x^{12} + 6 x^{10} - 3 x^{9} - 9 x^{8} + 9 x^{7} + 6 x^{6} + 9 x^{5} - 9 x^{4} - 9 x^{3} - 9$ | $6$ | $2$ | $18$ | 12T170 | $[3/2, 3/2, 2, 2]_{2}^{4}$ | |
| 137 | Data not computed | ||||||
| 1567 | Data not computed | ||||||