Normalized defining polynomial
\( x^{15} + 522 x^{13} - 5256 x^{12} + 90798 x^{11} - 1156208 x^{10} + 8741070 x^{9} - 58030848 x^{8} + 185704640 x^{7} + 7128368 x^{6} - 1113803840 x^{5} + 1484167680 x^{4} + 433160800 x^{3} - 1125382400 x^{2} + 222848000 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[9, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-672560372209647616583874741225333544667034419200000=-\,2^{21}\cdot 5^{5}\cdot 37^{5}\cdot 1741^{4}\cdot 10433^{2}\cdot 1216507^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $2446.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 37, 1741, 10433, 1216507$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{4} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{4} a^{3}$, $\frac{1}{80} a^{10} - \frac{1}{40} a^{9} + \frac{3}{40} a^{8} - \frac{1}{10} a^{7} + \frac{7}{40} a^{6} - \frac{9}{20} a^{5} + \frac{11}{40} a^{4} + \frac{7}{20} a^{3} + \frac{3}{10} a^{2} - \frac{1}{2} a$, $\frac{1}{160} a^{11} + \frac{1}{80} a^{9} + \frac{1}{40} a^{8} - \frac{1}{80} a^{7} - \frac{1}{20} a^{6} - \frac{5}{16} a^{5} + \frac{9}{20} a^{4} - \frac{1}{2} a^{3} - \frac{9}{20} a^{2}$, $\frac{1}{320} a^{12} - \frac{1}{160} a^{10} + \frac{3}{80} a^{9} - \frac{13}{160} a^{8} + \frac{3}{40} a^{7} + \frac{27}{160} a^{6} - \frac{13}{40} a^{5} + \frac{19}{40} a^{4} + \frac{17}{40} a^{3} + \frac{1}{5} a^{2}$, $\frac{1}{1600} a^{13} + \frac{1}{800} a^{11} + \frac{1}{400} a^{10} + \frac{19}{800} a^{9} + \frac{9}{200} a^{8} + \frac{3}{160} a^{7} - \frac{31}{200} a^{6} + \frac{3}{10} a^{5} - \frac{69}{200} a^{4} - \frac{7}{20} a^{3} - \frac{2}{5} a^{2}$, $\frac{1}{142139181347384119469024366290795693277088527070099200} a^{14} - \frac{127811039953296267723903372926059648840480340457}{2220924708552876866703505723293682707454508235470300} a^{13} - \frac{10613366778963741590895470048825967805319243426459}{71069590673692059734512183145397846638544263535049600} a^{12} - \frac{52554567965539180054214861764088143654467729099429}{17767397668423014933628045786349461659636065883762400} a^{11} + \frac{425928633875902288143205634000376363409229259234863}{71069590673692059734512183145397846638544263535049600} a^{10} + \frac{339031092051263400175534473986456730585616033349803}{8883698834211507466814022893174730829818032941881200} a^{9} + \frac{1267895138237293718280352787862936234802216859686487}{71069590673692059734512183145397846638544263535049600} a^{8} - \frac{491086580987092509374368941286781097888515491285047}{2220924708552876866703505723293682707454508235470300} a^{7} - \frac{311330624960000775955290674477951040444385089759613}{4441849417105753733407011446587365414909016470940600} a^{6} + \frac{2956300593865037847409027748338634570419670295989203}{8883698834211507466814022893174730829818032941881200} a^{5} - \frac{320474650675389479603670552111078324923504560899997}{4441849417105753733407011446587365414909016470940600} a^{4} + \frac{97946529599334842618354154384195291516482545108207}{444184941710575373340701144658736541490901647094060} a^{3} - \frac{370330769389989707908396799757871809701191692383937}{888369883421150746681402289317473082981803294188120} a^{2} - \frac{8762738167719444822680386367953886121473803089191}{44418494171057537334070114465873654149090164709406} a + \frac{5559238382870894133161477706636893972958994475411}{22209247085528768667035057232936827074545082354703}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 950430846326000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 10368000 |
| The 140 conjugacy class representatives for [S(5)^3]S(3)=S(5)wrS(3) are not computed |
| Character table for [S(5)^3]S(3)=S(5)wrS(3) is not computed |
Intermediate fields
| 3.3.148.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.9.0.1}{9} }{,}\,{\href{/LocalNumberField/3.6.0.1}{6} }$ | R | $15$ | ${\href{/LocalNumberField/11.9.0.1}{9} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }$ | R | ${\href{/LocalNumberField/41.9.0.1}{9} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.8.3 | $x^{6} + 2 x^{3} + 6$ | $6$ | $1$ | $8$ | $D_{6}$ | $[2]_{3}^{2}$ | |
| 2.6.11.3 | $x^{6} + 2 x^{2} + 14$ | $6$ | $1$ | $11$ | $S_4\times C_2$ | $[8/3, 8/3, 3]_{3}^{2}$ | |
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 37 | Data not computed | ||||||
| 1741 | Data not computed | ||||||
| 10433 | Data not computed | ||||||
| 1216507 | Data not computed | ||||||